Publications of the Department of Mathematics

Department of Mathematics

List of publications of the Department of Mathematics starting 2017

 

The following overview gives a first impression of the diverse publications of the researchers of the department exemplarily for the period from 2017, not only in peer-reviewed journals. A more detailed, complete and topic-specific impression is given by the pages of the individual institutes, research groups and coordinated programs

  1. 2024

    1. Albişoru, A. F., Kohr, M., Papuc, I., & Wendland, W. L. (2024). On some Robin–transmission problems for the Brinkman system and a Navier–Stokes type system. Math. Meth. Appl. Sci., 1–28. https://doi.org/10.1002/mma.10170
    2. Bondanza, M., Nottoli, T., Nottoli, M., Cupellini, L., Lipparini, F., & Mennucci, B. (2024). The OpenMMPol library for polarizable QM/MM calculations of properties and dynamics. The Journal of Chemical Physics, 160(13), Article 13. https://doi.org/10.1063/5.0198251
    3. Braun, A., Kohler, M., Langer, S., & Walk, H. (2024). Convergence rates for shallow neural networks learned by gradient descent. Bernoulli, 30(1), Article 1. https://doi.org/10.3150/23-bej1605
    4. Buchfink, P., Glas, S., Haasdonk, B., & Unger, B. (2024). Model reduction on manifolds: A differential geometric framework (2024 Physica D, Ed.). https://arxiv.org/abs/2312.01963
    5. Carvalho Corso, T., Dupuy, M.-S., & Friesecke, G. (2024). The density–density response function in time-dependent density functional theory: Mathematical foundations and pole shifting. Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire. https://doi.org/10.4171/aihpc/116
    6. Cheng, Y. (2024). Relativistic and electron-correlation effects in static dipole polarizabilities for main-group elements. Physical Review A, 110(4), Article 4. https://doi.org/10.1103/physreva.110.042805
    7. Claeys, X., Hassan, M., & Stamm, B. (2024). Continuity estimates for Riesz potentials on polygonal boundaries. Partial Differential Equations and Applications. https://doi.org/10.1007/s42985-024-00280-4
    8. Corso, T. C. (2024). A mathematical analysis of the adiabatic Dyson equation from time-dependent density functional theory. Nonlinearity, 37(6), Article 6. https://doi.org/10.1088/1361-6544/ad3a50
    9. Corso, T. C., Hassan, M., Jha, A., & Stamm, B. (2024). An $L^2$-maximum principle for circular arcs on the disk.
    10. Döppel, F., Wenzel, T., Herkert, R., Haasdonk, B., & Votsmeier, M. (2024). Goal‐Oriented Two‐Layered Kernel Models as Automated Surrogates for Surface Kinetics in Reactor Simulations. Chemie Ingenieur Technik, 96(6), Article 6. https://doi.org/10.1002/cite.202300178
    11. Ghosh, T., Bringedal, C., Rohde, C., & Helmig, R. (2024). A phase-field approach to model evaporation from porous media: Modeling and upscaling. https://arxiv.org/abs/2112.13104
    12. Giannoulis, I., Schmidt, B., & Schneider, G. (2024). NLS approximation for a scalar FPUT system on a 2D square lattice with a cubic nonlinearity. J. Math. Anal. Appl., 540(2), Article 2. https://doi.org/10.1016/j.jmaa.2024.128625
    13. Hammer, M., Wenzel, T., Santin, G., Meszaros-Beller, L., Little, J. P., Haasdonk, B., & Schmitt, S. (2024). A new method to design energy-conserving surrogate models for the coupled, nonlinear responses of intervertebral discs. Biomechanics and Modeling in Mechanobiology, 23(3), Article 3. https://doi.org/10.1007/s10237-023-01804-4
    14. Herkert, R., Buchfink, P., Wenzel, T., Haasdonk, B., Toktaliev, P., & Iliev, O. (2024). Greedy Kernel Methods for Approximating Breakthrough Curves for Reactive Flow from 3D Porous Geometry Data. Mathematics, 12(13), Article 13. https://doi.org/10.3390/math12132111
    15. Herkert, R. R. (2024). Replication Code for: Greedy Kernel Methods for Approximating Breakthrough Curves for Reactive Flow from 3D Porous Geometry Data. https://doi.org/10.18419/darus-4227
    16. Homs-Pons, C., Lautenschlager, R., Schmid, L., Ernst, J., Göddeke, D., Röhrle, O., & Schulte, M. (2024). Coupled Simulation and Parameter Inversion for Neural System  and Electrophysiological Muscle Models. GAMM-Mitteilungen. https://doi.org/10.1002/gamm.202370009
    17. Hsiao, G. C., Sánchez-Vizuet, T., & Wendland, W. L. (2024). Boundary-field formulation for transient electromagnetic scattering by dielectric scatterers and coated conductors. In SIAM J. Math. Analysis, to appear. https://doi.org/10.48550/arXiv.2406.05367
    18. Huber, F., Bürkner, P.-C., Göddeke, D., & Schulte, M. (2024). Knowledge-based modeling of simulation behavior for Bayesian  optimization. Computational Mechanics. https://doi.org/10.1007/s00466-023-02427-3
    19. Jha, A. (2024). Residual-Based a Posteriori Error Estimators for Algebraic Stabilizations. Applied Mathematics Letters, 157, 109192. https://doi.org/10.1016/j.aml.2024.109192
    20. Karabash, I. M., Lienstromberg, C., & Velázquez, J. J. L. (2024). Multi-parameter Hopf bifurcations of rimming flows. https://doi.org/10.48550/arXiv.2406.11690
    21. Kharitenko, A., & Scherer, C. W. (2024). On the exactness of a stability test for Lur’e systems with slope-restricted nonlinearities. IEEE Transactions on Automatic Control. https://doi.org/10.1109/TAC.2024.3362859
    22. Knobloch, P., Kuzmin, D., & Jha, A. (2024). Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations. Journal of Computational Physics, 518, 113305. https://doi.org/10.1016/j.jcp.2024.113305
    23. Kohr, M., Nistor, V., & Wendland, W. L. (2024). The Stokes operator on manifolds with cylindrical ends. Journal of Differential Equations, 407, Article 407. https://doi.org/10.1016/j.jde.2024.06.017
    24. Lindgren, E. B., Avis, H., Miller, A., Stamm, B., Besley, E., & Stace, A. J. (2024). The significance of multipole interactions for the stability of regular structures composed from charged particles. Journal of Colloid and Interface Science, 663, 458–466. https://doi.org/10.1016/j.jcis.2024.02.146
    25. Lukácová-Medvid’ová, M., & Rohde, C. (2024). Mathematical Challenges for the Theory of Hyperbolic Balance Laws in Fluid Mechanics: Complexity, Scales, Randomness. In Accepted for publication in Jahresber. Dtsch. Math.-Ver.
    26. Maier, B., Göddeke, D., Huber, F., Klotz, T., Röhrle, O., & Schulte, M. (2024). OpenDiHu: An Efficient and Scalable Framework for Biophysical  Simulations of the Neuromuscular System. Journal of Computational Science, 79(102291), Article 102291. https://doi.org/10.1016/j.jocs.2024.102291
    27. Maier, B., Göddeke, D., Huber, F., Klotz, T., Röhrle, O., & Schulte, M. (2024). OpenDiHu: An Efficient and Scalable Framework for Biophysical Simulations of the Neuromuscular System. Journal of Computational Science, 79. https://doi.org/10.1016/j.jocs.2024.102291
    28. Mel’nyk, T. A., & Durante, T. (2024). Spectral problems with perturbed Steklov conditions in thick junctions with branched structure. Applicable Analysis, 1–26. https://doi.org/10.1080/00036811.2024.2322644
    29. Mel’nyk, T., & Rohde, C. (2024). Reduced-dimensional modelling for nonlinear convection-dominated flow in cylindric domains. Nonlinear Differ. Equ. Appl., 31(105), Article 105. https://doi.org/10.1007/s00030-024-00997-6
    30. Mel’nyk, T., & Rohde, C. (2024). Asymptotic expansion for convection-dominated transport in a thin graph-like junction. Analysis and Applications, 22 (05), 833–879. https://doi.org/10.1142/S0219530524500040
    31. Nottoli, M., Herbst, M. F., Mikhalev, A., Jha, A., Lipparini, F., & Stamm, B. (2024). ddX: Polarizable continuum solvation from small molecules to proteins. WIREs Computational Molecular Science, 14(4), Article 4. https://doi.org/10.1002/wcms.1726
    32. Nottoli, M., Vanich, E., Cupellini, L., Scalmani, G., Pelosi, C., & Lipparini, F. (2024). Importance of Polarizable Embedding for Computing Optical Rotation: The Case of Camphor in Ethanol. The Journal of Physical Chemistry Letters, 7992–7999. https://doi.org/10.1021/acs.jpclett.4c01550
    33. Ruan, L., & Rybak, I. (2024). Stokes-Brinkman-Darcy models for coupled fluid-porous systems: derivation, analysis and validation. Appl. Math. Comp.  (Submitted).
    34. Schollenberger, T., von Wolff, L., Bringedal, C., Pop, I. S., Rohde, C., & Helmig, R. (2024). Investigation of Different Throat Concepts for Precipitation Processes in Saturated Pore-Network Models. Transport in Porous Media. https://doi.org/10.1007/s11242-024-02125-5
    35. Strohbeck, P., Discacciati, M., & Rybak, I. (2024). Optimized Schwarz method for the Stokes-Darcy problem with generalized interface conditions. J. Comput. Phys. (Submitted).
    36. Wendland, W. L. (2024). On the construction of the Stokes flow in a domain with cylindrical ends. Math. Meth. Appl. Sci., 1–6. https://doi.org/10.1002/mma.10106
    37. Wenzel, T., Haasdonk, B., Kleikamp, H., Ohlberger, M., & Schindler, F. (2024). Application of Deep Kernel Models for Certified and Adaptive RB-ML-ROM Surrogate Modeling. In I. Lirkov & S. Margenov (Eds.), Large-Scale Scientific Computations (pp. 117--125). Springer Nature Switzerland.
  2. 2023

    1. Afşer, H., Györfi, L., & Walk, H. (2023). Classification With Repeated Observations. IEEE Signal Processing Letters, 30, 1522–1526. https://doi.org/10.1109/LSP.2023.3326057
    2. Arridge, S. R., Burger, M., Hahn, B., & Quinto, E. T. (2023). Tomographic Inverse Problems: Mathematical Challenges and Novel Applications. Oberwolfach Reports, 20(2), Article 2. https://doi.org/10.4171/owr/2023/21
    3. Bamer, F., Ebrahem, F., Markert, B., & Stamm, B. (2023). Molecular Mechanics of Disordered Solids. Archives of Computational Methods in Engineering, 30(3), Article 3. https://doi.org/10.1007/s11831-022-09861-1
    4. Berberich, J., Scherer, C. W., & Allgower, F. (2023). Combining Prior Knowledge and Data for Robust Controller Design. IEEE Transactions on Automatic Control, 68(8), Article 8. https://doi.org/10.1109/tac.2022.3209342
    5. Brehmer, P., Herbst, M. F., Wessel, S., Rizzi, M., & Stamm, B. (2023). Reduced basis surrogates for quantum spin systems based on tensor networks. Physical Review E. https://doi.org/10.1103/PhysRevE.108.025306
    6. Buchfink, P., Glas, S., & Haasdonk, B. (2023). Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds. https://arxiv.org/abs/2312.00724
    7. Burbulla, S., Formaggia, L., Rohde, C., & Scotti, A. (2023). Modeling fracture propagation in poro-elastic media combining phase-field and discrete fracture models. Comput. Methods Appl. Mech. Engrg., 403. https://doi.org/10.1016/j.cma.2022.115699
    8. Burbulla, S., Hörl, M., & Rohde, C. (2023). Flow in Porous Media with Fractures of Varying Aperture. Accepted by SIAM J. Sci. Comput. https://doi.org/10.48550/arXiv.2207.09301
    9. Cancès, E., Herbst, M. F., Kemlin, G., Levitt, A., & Stamm, B. (2023). Numerical stability and efficiency of response property calculations in density functional theory. Letters in Mathematical Physics, 113(1), Article 1. https://doi.org/10.1007/s11005-023-01645-3
    10. Dippon, J., Gwinner, J., Khan, A. A., & Sama, M. (2023). A new regularized stochastic approximation framework for stochastic inverse problems. Nonlinear Anal. Real World Appl., 73, Paper No. 103869, 29. https://doi.org/10.1016/j.nonrwa.2023.103869
    11. Dusson, G., Sigal, I. M., & Stamm, B. (2023). Analysis of the Feshbach-Schur method for the Fourier spectral discretizations of Schrödinger operators. Mathematics of Computation, 92(340), Article 340. https://doi.org/10.1090/mcom/3774
    12. Eggenweiler, E., Nickl, J., & Rybak, I. (2023). Justification of generalized interface conditions for Stokes-Darcy problems. In E. Franck, J. Fuhrmann, V. Michel-Dansac, & L. Navoret (Eds.), Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems (pp. 275–283). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-40864-9_22
    13. Eggenweiler, E., & Rybak, I. (2023). Higher-order coupling conditions for arbitrary flows in Stokes-Darcy systems. J. Fluid Mech. (Submitted).
    14. Fukuizumi, R., Gao, Y., Schneider, G., & Takahashi, M. (2023). Pattern formation in 2D stochastic anisotropic Swift-Hohenberg equation. Interdiscip. Inform. Sci., 29(1), Article 1. https://doi.org/10.4036/iis.2023.a.03
    15. Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Consistent and Asymptotic-Preserving Finite-Volume Robin Transmission Conditions for Singularly Perturbed Elliptic Equations. In S. C. Brenner, E. Chung, A. Klawonn, F. Kwok, J. Xu, & J. Zou (Eds.), Domain Decomposition Methods in Science and Engineering XXVI (pp. 443--450). Springer International Publishing.
    16. Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations. SIAM J. Sci. Comput., 45(1), Article 1. https://doi.org/10.1137/21M1415005
    17. Gladbach, P., Jansen, J., & Lienstromberg, C. (2023). Non-Newtonian thin-film equations: global existence of solutions, gradient-flow structure and guaranteed lift-off. https://doi.org/10.48550/ARXIV.2301.10300
    18. Gramlich, D., Holicki, T., Scherer, C. W., & Ebenbauer, C. (2023). A Structure Exploiting SDP Solver for Robust Controller Synthesis. IEEE Control Systems Letters, 7, 1831--1836. https://doi.org/10.1109/lcsys.2023.3277314
    19. Gramlich, D., Pauli, P., Scherer, C. W., Allgöwer, F., & Ebenbauer, C. (2023). Convolutional Neural Networks as 2-D systems. https://doi.org/10.48550/ARXIV.2303.03042
    20. Gramlich, D., Scherer, C. W., Häring, H., & Ebenbauer, C. (2023). Synthesis of constrained robust feedback policies and model predictive control. https://doi.org/10.48550/ARXIV.2310.11404
    21. Griesemer, M., & Hofacker, M. (2023). On the weakness of short-range interactions in Fermi gases. Lett. Math. Phys., 113(1), Article 1. https://doi.org/10.1007/s11005-022-01624-0
    22. Györfi, L., Linder, T., & Walk, H. (2023). Lossless Transformations and Excess Risk Bounds in Statistical Inference. Entropy, 25(10), Article 10. https://doi.org/10.3390/e25101394
    23. Haas, T., de Rijk, B., & Schneider, G. (2023). Validity of Whitham’s modulation equations for dissipative systems with a conservation law: phase dynamics in a generalized Ginzburg-Landau system. Indiana Univ. Math. J., 72(1), Article 1. https://doi.org/10.1512/iumj.2023.72.9297
    24. Haasdonk, B., Kleikamp, H., Ohlberger, M., Schindler, F., & Wenzel, T. (2023). A New Certified Hierarchical and Adaptive RB-ML-ROM Surrogate Model for Parametrized PDEs. SIAM Journal on Scientific Computing, 45(3), Article 3. https://doi.org/10.1137/22m1493318
    25. Hahn, B., & Wirth, B. (2023). Convex reconstruction of moving particles with inexact motion model. PAMM, 23(2), Article 2. https://doi.org/10.1002/pamm.202300054
    26. Hahn, B. N., Quinto, E. T., & Rigaud, G. (2023). Foreword to special issue of Inverse Problems on modern challenges in imaging. Inverse Problems, 39(3), Article 3. https://doi.org/10.1088/1361-6420/acb569
    27. Hahn, B. N., Rigaud, G., & Schmähl, R. (2023). A class of regularizations based on nonlinear isotropic diffusion for inverse problems. IMA Journal of Numerical Analysis. https://doi.org/10.1093/imanum/drad002
    28. Heß, M., & Schneider, G. (2023). A robust way to justify the derivative NLS approximation. Z. Angew. Math. Phys., 74(6), Article 6. https://doi.org/10.1007/s00033-023-02121-7
    29. Hilder, B., de Rijk, B., & Schneider, G. (2023). Nonlinear stability of periodic roll solutions in the real Ginzburg-Landau equation against $C_ub^m$-perturbations. Comm. Math. Phys., 400(1), Article 1. https://doi.org/10.1007/s00220-022-04619-z
    30. Hilder, B., de Rijk, B., & Schneider, G. (2023). Moving modulating pulse and front solutions of permanent form in a FPU model with nearest and next-to-nearest neighbor interaction. SIAM J. Appl. Dyn. Syst., 22(2), Article 2. https://doi.org/10.1137/22M1502902
    31. Holicki, T., & Scherer, C. W. (2023). IQC based analysis and estimator design for discrete-time systems affected by impulsive uncertainties. Nonlinear Analysis: Hybrid Systems, 50, 101399. https://doi.org/10.1016/j.nahs.2023.101399
    32. Holzmüller, D., Zaverkin, V., Kästner, J., & Steinwart, I. (2023). A Framework and Benchmark for Deep Batch Active Learning for Regression. Journal of Machine Learning Research, 24(164), Article 164. http://jmlr.org/papers/v24/22-0937.html
    33. Hornischer, N. (2023). Model Order Reduction with Dynamically Transformed Modes for Electrophysiological Simulations. GAMM Archive for Students.
    34. Jansen, J., Lienstromberg, C., & Nik, K. (2023). Long-Time Behavior and Stability for Quasilinear Doubly Degenerate Parabolic Equations of Higher Order. SIAM Journal on Mathematical Analysis, 55(2), Article 2. https://doi.org/10.1137/22M1491137
    35. Jha, A., John, V., & Knobloch, P. (2023). Adaptive Grids in the Context of Algebraic Stabilizations for Convection-Diffusion-Reaction Equations. SIAM Journal on Scientific Computing, 45(4), Article 4. https://doi.org/10.1137/21m1466360
    36. Jha, A., Nottoli, M., Mikhalev, A., Quan, C., & Stamm, B. (2023). Linear Scaling Computation of Forces for the Domain-Decomposition Linear Poisson--Boltzmann Method. The Journal of Chemical Physics, 158, 104105. https://doi.org/10.1063/5.0141025
    37. Keckstein, S., Dippon, J., Hudelist, G., Koninckx, P., Condous, G., Schroeder, L., & Keckstein, J. (2023). Sonomorphologic Changes in Colorectal Deep Endometriosis: The Long-Term Impact of Age and Hormonal Treatment. Ultraschall in Der Medizin - European Journal of Ultrasound, EFirst, Article EFirst. https://doi.org/10.1055/a-2209-5653
    38. Keim, J., Munz, C.-D., & Rohde, C. (2023). A Relaxation Model for the Non-Isothermal Navier-Stokes-Korteweg Equations in Confined Domains. J. Comput. Phys., 474, 111830. https://doi.org/10.1016/j.jcp.2022.111830
    39. Kharitenko, A., & Scherer, C. (2023). Time-varying Zames–Falb multipliers for LTI Systems are superfluous. Automatica, 147. https://doi.org/10.1016/j.automatica.2022.110577
    40. Kohr, M., Nistor, V., & Wendland, W. L. (2023). Layer potentials and essentially translation invariant pseudodifferential operators on manifolds with cylindrical ends. In Postpandemic Operator Theory (pp. 61–115). Springer-Verlag Berlin. https://doi.org/10.48550/arXiv.2308.06308
    41. Lienstromberg, C., & Velázquez, J. J. L. (2023). Long-time asymptotics and regularity estimates for weak solutions to a doubly degenerate thin-film equation in the Taylor-Couette setting. arXiv, to appear in Pure and Applied Analysis. https://doi.org/10.48550/ARXIV.2203.00075
    42. Maier, D., Reichel, W., & Schneider, G. (2023). Breather solutions for a semilinear Klein-Gordon equation on a periodic metric graph. J. Math. Anal. Appl., 528(2), Article 2. https://doi.org/10.1016/j.jmaa.2023.127520
    43. Meijer, T. J., Holicki, T., Eijnden, S. J. A. M. van den, Scherer, C. W., & Heemels, W. P. M. H. (2023). The Non-Strict Projection Lemma. arXiv. https://doi.org/10.48550/ARXIV.2305.08735
    44. Mel’nyk, T. (2023). Complex Analysis (No. 1; Issue 1). Springer Cham. https://doi.org/10.1007/978-3-031-39615-1
    45. Mel’nyk, T., & Rohde, C. (2023). Asymptotic approximations for semilinear parabolic convection-dominated transport problems in thin graph-like networks. In arXiv e-prints. https://doi.org/10.48550/arXiv.2302.10105
    46. Mel’nyk, T., & Rohde, C. (2023). Puiseux asymptotic expansions for convection-dominated transport problems in thin graph-like networks: strong boundary interactions. /brokenurl#  https://doi.org/10.48550/arXiv.2307.02387
    47. Mel’nyk, T. A. (2023). Asymptotic analysis of spectral problems in thick junctions with the branched fractal structure. Mathematical Methods in the Applied Sciences, 46(3), Article 3. https://doi.org/10.1002/mma.8692
    48. Miao, Y., Rohde, C., & Tang, H. (2023). Well-posedness for a stochastic Camassa-Holm type equation with higher order nonlinearities. Accepted by Stoch. Partial Differ. Equ. Anal. Comput. https://arxiv.org/abs/2105.08607
    49. Morato, M. M., Holicki, T., & Scherer, C. W. (2023). Stabilizing Model Predictive Control Synthesis using Integral Quadratic Constraints and Full-Block Multipliers. International Journal of Robust and Nonlinear Control, 33(18), Article 18. https://doi.org/10.1002/rnc.6952
    50. Nagy, P.-A., & Semmelmann, U. (2023). Eigenvalue estimates for 3-Sasaki structures.
    51. Nottoli, M., Bondanza, M., Mazzeo, P., Cupellini, L., Curutchet, C., Loco, D., Lagardère, L., Piquemal, J., Mennucci, B., & Lipparini, F. (2023). QM/AMOEBA description of properties and dynamics of embedded molecules. WIREs Computational Molecular Science, 13(6), Article 6. https://doi.org/10.1002/wcms.1674
    52. Pelinovsky, D., & Schneider, G. (2023). KP-II approximation for a scalar Fermi-Pasta-Ul system on a 2D square lattice. SIAM J. Appl. Math., 83(1), Article 1. https://doi.org/10.1137/22M1509369
    53. Pes, F., Polack, É., Mazzeo, P., Dusson, G., Stamm, B., & Lipparini, F. (2023). A Quasi Time-Reversible Scheme Based on Density Matrix Extrapolation on the Grassmann Manifold for Born–Oppenheimer Molecular Dynamics. The Journal of Physical Chemistry Letters, 9720--9726. https://doi.org/10.1021/acs.jpclett.3c02098
    54. Santin, G., Wenzel, T., & Haasdonk, B. (2023). On the optimality of target-data-dependent kernel greedy interpolation in Sobolev Reproducing Kernel Hilbert Spaces. https://arxiv.org/abs/2307.09811
    55. Scherer, C. W. (2023). Robust Exponential Stability and Invariance Guarantees with General Dynamic O’Shea-Zames-Falb Multipliers. https://doi.org/10.48550/ARXIV.2306.00571
    56. Schwahn, P., Semmelmann, U., & Weingart, G. (2023). Stability of the Non-Symmetric Space $E_7/PSO(8)$.
    57. Seus, D., Radu, F. A., & Rohde, C. (2023). Towards hybrid two-phase modelling using linear domain decomposition. Numer. Methods Partial Differential Equations, 39(1), Article 1. https://doi.org/10.1002/num.22906
    58. Theisen, L., & Stamm, B. (2023). A Scalable Two-Level Domain Decomposition Eigensolver for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains. https://doi.org/10.48550/arXiv.2311.08757
    59. Wendland, W. L. (2023). My relation with GAMM (G. Rundbrief, Ed.; No. 1). GAMM Rundbrief. https://www.gamm.org/wp-content/uploads/2024/03/GAMM_1-23_web.pdf
    60. Wenzel, T., Santin, G., & Haasdonk, B. (2023). Analysis of Target Data-Dependent Greedy Kernel Algorithms: Convergence Rates for f -, f · P - and f /P -greedy. Constructive Approximation, 57(1), Article 1. https://doi.org/10.1007/s00365-022-09592-3
    61. Wenzel, T., Santin, G., & Haasdonk, B. (2023). Stability of convergence rates: Kernel interpolation on non-Lipschitz domains (2024 IMA Journal of Numerical Analysis, 44(3):1-22, Ed.). https://doi.org/10.1093/imanum/drae014
    62. Zaverkin, V., Holzmüller, D., Bonfirraro, L., & Kästner, J. (2023). Transfer learning for chemically accurate interatomic neural network potentials. Phys. Chem. Chem. Phys., 25(7), Article 7. https://doi.org/10.1039/D2CP05793J
  3. 2022

    1. Agullo, E., Altenbernd, M., Anzt, H., Bautista-Gomez, L., Benacchio, T., Bonaventura, L., Bungartz, H.-J., Chatterjee, S., Ciorba, F. M., DeBardeleben, N., Drzisga, D., Eibl, S., Engelmann, C., Gansterer, W. N., Giraud, L., Göddeke, D., Heisig, M., Jézéquel, F., Kohl, N., … Wohlmuth, B. (2022). Resiliency in numerical algorithm design for extreme scale simulations. The International Journal of High Performance ComputingApplications, 36(2), Article 2. https://doi.org/10.1177/10943420211055188
    2. Assenmacher, O., Bruell, G., & Lienstromberg, C. (2022). Non-Newtonian two-phase thin-film problem: local existence, uniqueness, and stability. Comm. Partial Differential Equations, 47(1), Article 1. https://doi.org/10.1080/03605302.2021.1957929
    3. Benner, P., Burger, M., Göddeke, D., Görgen, C., Himpe, C., Heiland, J., Koprucki, T., Ohlberger, M., Rave, S., Reiselbach, M., Saak, J., Schöbel, A., Tabelow, K., & Weber, M. (2022). Die mathematische Forschungsdateninitiative in der NFDI:  MaRDI (Mathematical Research Data Initiative). GAMM Rundbrief, 2022(1), Article 1.
    4. Beschle, C. (2022). Uncertainty visualization: Fundamentals and recent developments, code to produce data and visuals used in Section 5. https://doi.org/10.18419/darus-3154
    5. Beschle, C., & Kovács, B. (2022). Stability and error estimates for non-linear Cahn–Hilliard-type equations on evolving surfaces. Numerische Mathematik, 1--48. https://doi.org/10.1007/s00211-022-01280-5
    6. Boege, T., Fritze, R., Görgen, C., Hanselman, J., Iglezakis, D., Kastner, L., Koprucki, T., Krause, T., Lehrenfeld, C., Polla, S., Reidelbach, M., Riedel, C., Saak, J., Schembera, B., Tabelow, K., & Weber, M. (2022). Research-Data Management Planning in the German Mathematical Community. arXiv. https://doi.org/10.48550/ARXIV.2211.12071
    7. Buchfinck, P., Glas, S., & Haasdonk, B. (2022). Optimal Bases for Symplectic Model Order Reduction of Canonizable Linear Hamiltonian Systems.
    8. Buchfink, P., Glas, S., & Haasdonk, B. (2022). Optimal Bases for Symplectic Model Order Reduction of Canonizable Linear Hamiltonian Systems. IFAC-PapersOnLine, 55(20), Article 20. https://doi.org/10.1016/j.ifacol.2022.09.138
    9. Burbulla, S., Dedner, A., Hörl, M., & Rohde, C. (2022). Dune-MMesh: The Dune Grid Module for Moving Interfaces. J. Open Source Softw., 7(74), Article 74. https://doi.org/10.21105/joss.03959
    10. Burbulla, S., & Rohde, C. (2022). A finite-volume moving-mesh method for two-phase flow in fracturing porous media. J. Comput. Phys., 111031. https://doi.org/10.1016/j.jcp.2022.111031
    11. Cekić, M., Lefeuvre, T., Moroianu, A., & Semmelmann, U. (2022). Towards Brin’s conjecture on frame flow ergodicity: new progress and perspectives.
    12. Echterdiek, F., Kitterer, D., Dippon, J., Ott, M., Paul, G., Latus, J., & Schwenger, V. (2022). Outcome of kidney transplantations from ≥65‐year‐old deceased donors with acute kidney injury. Clinical Transplantation, 36(5), Article 5. https://doi.org/10.1111/ctr.14612
    13. Echterdiek, F., Tilgener, C., Dippon, J., Kitterer, D., Scheder-Bieschin, J., Paul, G., Ott, M., Humke, U., Schwenger, V., & Latus, J. (2022). Impact of the explanting surgeon’s impression of donor arteriosclerosis on outcome of kidney transplantations from donors aged ≥65 years. Langenbeck’s Archives of Surgery, 407(2), Article 2. https://doi.org/10.1007/s00423-021-02383-7
    14. Eggenweiler, E., Discacciati, M., & Rybak, I. (2022). Analysis of the Stokes-Darcy problem with generalised interface conditions. ESAIM Math. Model. Numer. Anal., 56, 727–742. https://doi.org/10.1051/m2an/2022025
    15. Eggenweiler, E. (2022). Interface conditions for arbitrary flows in Stokes-Darcy systems : derivation, analysis and validation. Universität Stuttgart. https://doi.org/10.18419/OPUS-12573
    16. Fiedler, C., Scherer, C. W., & Trimpe, S. (2022). Learning Functions and Uncertainty Sets Using Geometrically Constrained Kernel Regression. 61st IEEE Conf. Decision and Control, 2141–2146. https://doi.org/10.1109/cdc51059.2022.9993144
    17. Frank, R. L., Laptev, A., & Weidl, T. (2022). An improved one-dimensional Hardy inequality. J. Math. Sci. (N.Y.), 268(3, Problems in mathematical analysis. No. 118), Article 3, Problems in mathematical analysis. No. 118. https://doi.org/10.1007/s10958-022-06199-8
    18. Frank, R., Laptev, A., & Weidl, T. (2022). Schrödinger Operators: Eigenvalues and Lieb–Thirring Inequalities (p. 512). Cambridge University Press.
    19. Fukuizumi, R., & Schneider, G. (2022). Interchanging space and time in nonlinear optics modeling and dispersion management models. J. Nonlinear Sci., 32(3), Article 3. https://doi.org/10.1007/s00332-022-09788-8
    20. Gavrilenko, P., Haasdonk, B., Iliev, O., Ohlberger, M., Schindler, F., Toktaliev, P., Wenzel, T., & Youssef, M. (2022). A Full Order, Reduced Order and Machine Learning Model Pipeline for Efficient Prediction of Reactive Flows. In I. Lirkov & S. Margenov (Eds.), Large-Scale Scientific Computing (pp. 378--386). Springer International Publishing.
    21. Gilg, S., Schneider, G., & Uecker, H. (2022). Nonlinear dynamics of modulated waves on graphene like quantum graphs. Math. Nachr., 295(11), Article 11. https://doi.org/10.1002/mana.202100009
    22. Gramlich, D., Ebenbauer, C., & Scherer, C. W. (2022). Synthesis of Accelerated Gradient Algorithms for Optimization and Saddle Point Problems using Lyapunov functions. Syst. Control Lett., 165. https://doi.org/doi.org/10.1016/j.sysconle.2022.105271
    23. Gramlich, D., Scherer, C. W., & Ebenbauer, C. (2022). Robust Differential Dynamic Programming. 61st IEEE Conf. Decision and Control. https://doi.org/10.1109/cdc51059.2022.9992569
    24. Griesemer, M. (2022). Ground states of atoms and molecules in non-relativistic QED. In The Physics and Mathematics of Elliott Lieb (pp. 437--450). EMS Press. https://doi.org/10.4171/90-1/18
    25. Griesemer, M., & Hofacker, M. (2022). From Short-Range to Contact Interactions in Two-dimensional Many-Body Quantum Systems. Annales Henri Poincaré, 23(8), Article 8. https://doi.org/10.1007/s00023-021-01149-7
    26. Haasdonk, B., Kleikamp, H., Ohlberger, M., Schindler, F., & Wenzel, T. (2022). A new certified hierarchical and adaptive RB-ML-ROM surrogate model for parametrized PDEs. arXiv. https://doi.org/10.48550/ARXIV.2204.13454
    27. Hahn, B. N., Garrido, M.-L. K., Klingenberg, C., & Warnecke, S. (2022). Using the Navier-Cauchy equation for motion estimation in dynamic imaging. Inverse Problems and Imaging, 16(5), Article 5. https://doi.org/10.3934/ipi.2022018
    28. Hassan, M., Williamson, C., Baptiste, J., Braun, S., Stace, A. J., Besley, E., & Stamm, B. (2022). Manipulating Interactions between Dielectric Particles with Electric Fields : A General Electrostatic Many-Body Framework. Journal of Chemical Theory and Computation, 18(10), Article 10. https://doi.org/10.1021/acs.jctc.2c00008
    29. Hilder, B. (2022). Modulating traveling fronts in a dispersive Swift-Hohenberg equation coupled to an additional conservation law. J. Math. Anal. Appl., 513(2), Article 2. https://doi.org/10.1016/j.jmaa.2022.126224
    30. Hilder, B., & Sharma, U. (2022). Quantitative coarse-graining of Markov chains.
    31. Holicki, T. (2022). A Complete Analysis and Design Framework for Linear Impulsive and Related Hybrid Systems [University of Stuttgart]. https://doi.org/10.18419/opus-12158
    32. Holicki, T., & Scherer, C. W. (2022). A Dynamic S-Procedure for Dynamic Uncertainties. IFAC-PapersOnline, 55(25), Article 25. https://doi.org/10.1016/j.ifacol.2022.09.331
    33. Holicki, T., & Scherer, C. W. (2022). Input-Output-Data-Enhanced Robust Analysis via Lifting.
    34. Holicki, T., & Scherer, C. W. (2022). IQC Based Analysis and Estimator Design for Discrete-Time Systems Affected by Impulsive Uncertainties.
    35. Holzmüller, D., & Steinwart, I. (2022). Training two-layer ReLU networks with gradient descent is inconsistent. Journal of Machine Learning Research, 23(181), Article 181. http://jmlr.org/papers/v23/20-830.html
    36. Hornischer, N. (2022). Model Order Reduction with Transformed Modes for Electrophysiological Simulations [Bathesis].
    37. Horsch, M. T., & Schembera, B. (2022). Documentation of epistemic metadata by a mid-level ontology of cognitive processes. Proc. JOWO 2022.
    38. Hsiao, G. C., Sánchez-Vizuet, T., & Wendland, W. L. (2022). A Boundary-Field Formulation for Elastodynamic Scattering. Journal of Elasticity. https://doi.org/10.1007/s10659-022-09964-7
    39. Hägele, D., Schulz, C., Beschle, C., Booth, H., Butt, M., Barth, A., Deussen, O., & Weiskopf, D. (2022). Uncertainty Visualization: Fundamentals and Recent Developments. It - Information Technology, 64(4–5), Article 4–5. https://doi.org/10.1515/itit-2022-0033
    40. Jung, K., Schembera, B., & Gärtner, M. (2022). Best of Both Worlds? Mapping Process Metadata in Digital Humanities and Computational Engineering. Metadata and Semantic Research, 199--205. https://doi.org/10.1007/978-3-030-98876-0_17
    41. Klink, M. (2022). Time Error Estimators and Adaptive Time-stepping Schemes [Bathesis].
    42. Klumpp, M., & Schneider, G. (2022). The Schrödinger approximation for the Helmholtz equation if the refractive index is a step function. Wave Motion, 110, Paper No. 102891, 6. https://doi.org/10.1016/j.wavemoti.2022.102891
    43. Klumpp, M., & Schneider, G. (2022). A note on the validity of the Schrödinger approximation for the Helmholtz equation. J. Appl. Anal., 28(1), Article 1. https://doi.org/10.1515/jaa-2021-2058
    44. Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2022). On some mixed-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces. JMAA, 516(1, 126464), Article 1, 126464. https://doi.org/10.1016/j.jmaa.2022.126464
    45. Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2022). Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces. Calc. Var. Partial Differential Equations, 61, Paper No. 198, 47.
    46. Kröker, I., Oladyshkin, S., & Rybak, I. (2022). Global sensitivity analysis using multi-resolution polynomial chaos expansion for coupled Stokes-Darcy flow problems. Comput. Geosci. (Submitted).
    47. Leiteritz, R., Buchfink, P., Haasdonk, B., & Pflüger, D. (2022). Surrogate-data-enriched Physics-Aware Neural Networks. Proceedings of the Northern Lights Deep Learning Workshop 2022, 3. https://doi.org/10.7557/18.6268
    48. Lienstromberg, C., Pernas-Castano, T., & Velázquez, J. J. L. (2022). Analysis of a two-fluid Taylor-Couette flow with one non-Newtonian fluid. J. Nonlinear Sci., 32(2), Article 2. https://doi.org/10.1007/s00332-021-09750-0
    49. Magiera, J., & Rohde, C. (2022). A molecular–continuum multiscale model for inviscid liquid–vapor flow with sharp interfaces. J. Comput. Phys., 111551. https://doi.org/10.1016/j.jcp.2022.111551
    50. Magiera, J., & Rohde, C. (2022). Analysis and Numerics of Sharp and Diffuse Interface Models for Droplet Dynamics (K. Schulte, C. Tropea, & B. Weigand, Eds.; pp. 67–86). Springer International Publishing. https://doi.org/10.1007/978-3-031-09008-0_4
    51. Maier, B., Göddeke, D., Huber, F., Klotz, T., Röhrle, O., & Schulte, M. (2022). OpenDiHu: An Efficient and Scalable Framework for Biophysical Simulations of the Neuromuscular System.
    52. Mehl, L., Beschle, C., Barth, A., & Bruhn, A. (2022). Replication Data for: An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation. https://doi.org/10.18419/darus-2890
    53. Melnyk, T., & Rohde, C. (2022). Asymptotic expansion for convection-dominated transport in a thin graph-like junction. In arXiv e-prints. https://doi.org/10.48550/ARXIV.2208.05812
    54. Mel’nyk, T., & Klevtsovskiy, A. V. (2022). Asymptotic expansion for the solution of a convection-diffusion problem in a thin graph-like junction. Asymptotic Analysis, 130(3–4), Article 3–4. https://doi.org/10.3233/ASY-221761
    55. Merkle, R., & Barth, A. (2022). Multilevel Monte Carlo estimators for elliptic PDEs with Lévy-type diffusion coefficient. BIT Numer Math. https://doi.org/10.1007/s10543-022-00912-4
    56. Merkle, R., & Barth, A. (2022). Subordinated Gaussian Random Fields in Elliptic Partial Differential Equations. Stoch PDE: Anal Comp. https://doi.org/10.1007/s40072-022-00246-w
    57. Merkle, R., & Barth, A. (2022). On some distributional properties of subordinated Gaussian random fields. Methodol Comput Appl Probab.
    58. Mikhalev, A., Nottoli, M., & Stamm, B. (2022). Linearly scaling computation of ddPCM solvation energy and forces using the fast multipole method. The Journal of Chemical Physics, 157(11), Article 11. https://doi.org/10.1063/5.0104536
    59. Nitzsche, M., Albers, H., Kluth, T., & Hahn, B. (2022). Compensating model imperfections during image reconstruction via Resesop. International Journal on Magnetic Particle Imaging, Vol 8 No 1 Suppl 1 (2022). https://doi.org/10.18416/IJMPI.2022.2203062
    60. Nottoli, M., Mikhalev, A., Stamm, B., & Lipparini, F. (2022). Coarse-Graining ddCOSMO through an Interface between Tinker and the ddX Library. The Journal of Physical Chemistry B, 126(43), Article 43. https://doi.org/10.1021/acs.jpcb.2c04579
    61. Rettberg, J., Wittwar, D., Buchfink, P., Brauchler, A., Ziegler, P., Fehr, J., & Haasdonk, B. (2022). Port-Hamiltonian Fluid-Structure Interaction Modeling and Structure-Preserving Model Order Reduction of a Classical Guitar. https://doi.org/10.48550/arXiv.2203.10061
    62. Santin, G., Karvonen, T., & Haasdonk, B. (2022). Sampling based approximation of linear functionals in reproducing kernel Hilbert spaces. BIT - Numerical Mathematics, 62(1), Article 1. https://doi.org/10.1007/s10543-021-00870-3
    63. Scherer, C. (2022). Dissipativity and Integral Quadratic Constraints, Tailored computational robustness tests for complex interconnections. IEEE Control Systems Magazine, 42(3), Article 3. https://doi.org/10.1109/MCS.2022.3157117
    64. Scherer, C. W. (2022). Dissipativity, Convexity and Tight O\textquotesingleShea-Zames-Falb Multipliers for Safety Guarantees. IFAC-PapersOnLine, 55(30), Article 30. https://doi.org/10.1016/j.ifacol.2022.11.044
    65. Schneider, G., & Winter, M. (2022). The amplitude system for a imultaneous short-wave Turing and long-wave Hopf instability. Discrete Contin. Dyn. Syst. Ser. S, 15(9), Article 9. https://doi.org/10.3934/dcdss.2021119
    66. Schneider, G., & Winter, M. (2022). The amplitude system for a simultaneous short-wave Turing  and long-wave Hopf instability. Discrete Contin. Dyn. Syst. Ser. S, 15(9), Article 9. https://doi.org/10.3934/dcdss.2021119
    67. Shuva, S., Buchfink, P., Röhrle, O., & Haasdonk, B. (2022). Reduced Basis Methods for Efficient Simulation of a Rigid Robot Hand Interacting with Soft Tissue. In I. Lirkov & S. Margenov (Eds.), Large-Scale Scientific Computing (pp. 402--409). Springer International Publishing.
    68. Stamm, B., & Theisen, L. (2022). A Quasi-Optimal Factorization Preconditioner for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains. SIAM Journal on Numerical Analysis, 60(5), Article 5. https://doi.org/10.1137/21m1456005
    69. von Wolff, L., & Pop, I. S. (2022). Upscaling of a Cahn–Hilliard Navier–Stokes model with precipitation and dissolution in a thin strip. Journal of Fluid Mechanics, 941, A49--. https://doi.org/DOI: 10.1017/jfm.2022.308
    70. Wenzel, T., Kurz, M., Beck, A., Santin, G., & Haasdonk, B. (2022). Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows. In I. Lirkov & S. Margenov (Eds.), Large-Scale Scientific Computing (pp. 410--418). Springer International Publishing.
    71. Wenzel, T., Santin, G., & Haasdonk, B. (2022). Stability of convergence rates: Kernel interpolation on non-Lipschitz domains. arXiv. https://doi.org/10.48550/ARXIV.2203.12532
    72. Wenzel, T., Santin, G., & Haasdonk, B. (2022). Analysis of Target Data-Dependent Greedy Kernel Algorithms: Convergence Rates for f-, \$\$f \backslashcdot P\$\$- and f/P-Greedy. Constructive Approximation. https://doi.org/10.1007/s00365-022-09592-3
    73. Zaverkin, V., Holzmüller, D., Schuldt, R., & Kästner, J. (2022). Predicting properties of periodic systems from cluster data: A case study of liquid water. The Journal of Chemical Physics, 156(11), Article 11. https://doi.org/10.1063/5.0078983
    74. Zaverkin, V., Holzmüller, D., Steinwart, I., & Kästner, J. (2022). Exploring chemical and conformational spaces by batch mode deep active learning. Digital Discovery, 1, 605–620. https://doi.org/10.1039/D₂DD00034B
    75. Zinßer, M., Braun, B., Helder, T., Magorian Friedlmeier, T., Pieters, B., Heinlein, A., Denk, M., Göddeke, D., & Powalla, M. (2022). Irradiation-dependent topology optimization of metallization grid patterns and variation of contact layer thickness used for latitude-based yield gain of thin-film solar modules. MRS Advances, 7(3), Article 3. https://doi.org/10.1557/s43580-022-00321-3
  4. 2021

    1. Alkämper, M., Magiera, J., & Rohde, C. (2021). An Interface Preserving Moving Mesh in Multiple SpaceDimensions. Computing Research Repository, abs/2112.11956. https://arxiv.org/abs/2112.11956
    2. Altenbernd, M., Dreier, N.-A., Engwer, C., & Göddeke, D. (2021). Towards Local-Failure Local-Recovery in PDE Frameworks: The Case of Linear Solvers. In T. Kozubek, P. Arbenz, J. Jaros, L. Ríha, J. Sístek, & P. Tichý (Eds.), High Performance Computing in Science and Engineering -- HPCSE 2019 (Vol. 12456, pp. 17--38). Springer. https://doi.org/10.1007/978-3-030-67077-1_2
    3. Altmann, K., & Witt, F. (2021). Toric co-Higgs sheaves. Journal of Pure and Applied Algebra, 225(8), Article 8. https://doi.org/10.1016/j.jpaa.2020.106634
    4. Barth, A., & Merkle, R. (2021). Multilevel Monte Carlo estimators for elliptic PDEs with Lévy-type diffusion coefficient. ArXiv E-Prints, ArXiv:2108.05604 Math.NA.
    5. Beck, A., Dürrwächter, J., Kuhn, T., Meyer, F., Munz, C.-D., & Rohde, C. (2021). Uncertainty Quantification in High Performance Computational Fluid Dynamics. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’19 (pp. 355--371). Springer International Publishing.
    6. Benacchio, T., Bonaventura, L., Altenbernd, M., Cantwell, C. D., Düben, P. D., Gillard, M., Giraud, L., Göddeke, D., Raffin, E., Teranishi, K., & Wedi, N. (2021). Resilience and fault tolerance in high-performance computing for numerical weather and climate prediction. The International Journal of High Performance Computing Applications (Online First). https://doi.org/10.1177/1094342021990433
    7. Benguria, R. D., Cianchi, A., Maz’ya, V. G., Davies, E. B., Takhtajan, L. A., Tretter, C., Yafaev, D., & und weitere. (2021). Partial differential equations, spectral theory, and mathematical physics—the Ari Laptev anniversary volume. In P. Exner, R. L. Frank, F. Gesztesy, H. Holden, & T. Weidl (Eds.), EMS Series of Congress Reports. EMS Press, Berlin. https://doi.org/10.4171/ECR/18
    8. Berrett, T. B., Gyorfi, L., & Walk, H. (2021). Strongly universally consistent nonparametric regression and    classification with privatised data. ELECTRONIC JOURNAL OF STATISTICS, 15(1), Article 1. https://doi.org/10.1214/21-EJS1845
    9. Brencher, L., & Barth, A. (2021). Stochastic conservation laws with discontinuous flux functions: The multidimensional case.
    10. Brencher, L., & Barth, A. (2021). Scalar conservation laws with stochastic discontinuous flux function. ArXiv E-Prints, ArXiv:2107.00549 Math.NA.
    11. Buchfink, P., Glas, S., & Haasdonk, B. (2021). Symplectic Model Reduction of Hamiltonian Systems on Nonlinear Manifolds. https://doi.org/10.48550/arXiv.2112.10815
    12. Buchfink, P., & Haasdonk, B. (2021). Experimental Comparison of Symplectic and Non-symplectic Model Order Reduction an Uncertainty Quantification Problem. In F. J. Vermolen & C. Vuik (Eds.), Numerical Mathematics and Advanced Applications ENUMATH 2019 (Vol. 139). Springer International Publishing. https://doi.org/10.1007/978-3-030-55874-1
    13. Cleyton, R., Moroianu, A., & Semmelmann, U. (2021). Metric connections with parallel skew-symmetric torsion. Adv. Math., 378, 107519, 50. https://doi.org/10.1016/j.aim.2020.107519
    14. de Rijk, B., & Sandstede, B. (2021). Diffusive stability against nonlocalized perturbations of planar wave trains in reaction-diffusion systems. J. Differential Equations, 274, 1223--1261. https://doi.org/10.1016/j.jde.2020.10.027
    15. de Rijk, B., & Schneider, G. (2021). Global existence and decay in multi-component reaction-diffusion-advection systems with different              velocities: oscillations in time and frequency. NoDEA Nonlinear Differential Equations Appl., 28(1), Article 1. https://doi.org/10.1007/s00030-020-00665-5
    16. Düll, W.-P. (2021). Validity of the nonlinear Schrödinger approximation for the two-dimensional water wave problem with and without surface tension in the arc length formulation. Arch. Ration. Mech. Anal., 239(2), Article 2. https://doi.org/10.1007/s00205-020-01586-4
    17. Echterdiek, F., Kitterer, D., Dippon, J., Paul, G., Schwenger, V., & Latus, J. (2021). Impact of cardiopulmonary resuscitation on outcome of kidney transplantations from braindead donors aged ≥65 years. Clin Transplant., 2021 Aug 13:, e14452. https://doi.org/10.1111/ctr.14452
    18. Eggenweiler, E., Discacciati, M., & Rybak, I. (2021). Analysis of the Stokes-Darcy problem with generalised interface conditions. ESAIM Math. Model. Numer. Anal. (Submitted). https://arxiv.org/abs/2104.02339
    19. Ehring, T., & Haasdonk, B. (2021). Feedback control for a coupled soft tissue system by kernel surrogates. Coupled Problems 2021, IS11, Article IS11. https://doi.org/10.23967/coupled.2021.026
    20. Ehring, T., & Haasdonk, B. (2021). Greedy sampling and approximation for realizing feedback control for high dimensional nonlinear systems.
    21. Fiedler, C., Scherer, C. W., & Trimpe, S. (2021). Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8), Article 8. https://ojs.aaai.org/index.php/AAAI/article/view/16912
    22. Fiedler, C., Scherer, C. W., & Trimpe, S. (2021). Learning-enhanced robust controller synthesis with rigorous statistical and control-theoretic guarantees. 60th IEEE Conf. Decision and Control, 5122–5129. https://arxiv.org/abs/2105.03397
    23. Freiberg, U., & Kohl, S. (2021). Box dimension of fractal attractors and their numerical computation. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 95. https://doi.org/10.1016/j.cnsns.2020.105615
    24. Freiherr von Wolff, L. (2021). The Dune-Phasefield Module release 1.0. DaRUS. https://doi.org/10.18419/darus-1634
    25. Gander, M., Lunowa, S., & Rohde, C. (2021). Non-overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations. http://www.uhasselt.be/Documents/CMAT/Preprints/2021/UP2103.pdf
    26. Gander, M., Lunowa, S., & Rohde, C. (2021). Consistent and asymptotic-preserving finite-volume domain decomposition methods for singularly perturbed elliptic equations. Domain Decomposition Methods in Science and Engineering XXVI. http://www.uhasselt.be/Documents/CMAT/Preprints/2021/UP2103.pdf
    27. Geck, M. (2021). Generalised Gelfand-Graev representations in bad characteristic? Transformation Groups, 26(1), Article 1. https://doi.org/10.1007/s00031-020-09575-3
    28. Giesselmann, J., Meyer, F., & Rohde, C. (2021). Error control for statistical solutions of hyperbolic systems              of conservation laws. Calcolo, 58(2), Article 2. https://doi.org/10.1007/s10092-021-00417-6
    29. Girardi, G., & Wirth, J. (2021). Decay Estimates for a Klein-Gordon Model with Time-Periodic Coeffizients. In M. Cicognani, D. del Santo, A. Parmeggiani, & M. Reissig (Eds.), Anomalies in Partial Differential Equations (Vol. 43). Springer. https://doi.org/10.1007/978-3-030-61346-4_14
    30. Haasdonk, B., Hamzi, B., Santin, G., & Wittwar, D. (2021). Kernel methods for center manifold approximation and a weak              data-based version of the center manifold theorem. Phys. D, 427, Paper No. 133007, 14. https://doi.org/10.1016/j.physd.2021.133007
    31. Haasdonk, B. (2021). Model Order Reduction, Applications, MOR Software (D. Gruyter, Ed.; Vol. 3). De Gruyter. https://doi.org/10.1515/9783110499001
    32. Haasdonk, B., Ohlberger, M., & Schindler, F. (2021). An adaptive model hierarchy for data-augmented training of kernel models for reactive flow.
    33. Haasdonk, B., Wenzel, T., Santin, G., & Schmitt, S. (2021). Biomechanical Surrogate Modelling Using Stabilized Vectorial Greedy Kernel Methods.
    34. Hahn, B. N. (2021). Motion compensation strategies in tomography. https://doi.org/10.1007/978-3-030-57784-1_3
    35. Hahn, B. N., Kienle-Garrido, M. L., & Quinto, E. T. (2021). Microlocal properties of dynamic Fourier integral operators. https://doi.org/10.1007/978-3-030-57784-1_4
    36. Hamm, T., & Steinwart, I. (2021). Intrinsic Dimension Adaptive Partitioning for Kernel Methods. Fakultät für Mathematik und Physik, Universität Stuttgart.
    37. Hamm, T., & Steinwart, I. (2021). Adaptive Learning Rates for Support Vector Machines Working on Data with Low Intrinsic Dimension. Ann. Statist., 49, 3153--3180. https://doi.org/10.1214/21-AOS2078
    38. Hang, H., & Steinwart, I. (2021). Optimal Learning with Anisotropic Gaussian SVMs. Appl. Comput. Harmon. Anal., 55, Article 55. https://doi.org/10.1016/j.acha.2021.06.004
    39. Hilder, B. (2021). Nonlinear stability of fast invading fronts in a Ginzburg–Landau equation with an additional conservation law. Nonlinearity, 34(8), Article 8. https://doi.org/10.1088/1361-6544/abd612
    40. Holicki, T., & Scherer, C. W. (2021). Algorithm Design and Extremum Control: Convex Synthesis due to Plant Multiplier Commutation. Proc. 60th IEEE Conf. Decision and Control, 3249–3256. https://doi.org/10.1109/CDC45484.2021.9683012
    41. Holicki, T., & Scherer, C. W. (2021). Robust Gain-Scheduled Estimation with Dynamic D-Scalings. IEEE Trans. Autom. Control, 66(11), Article 11. https://doi.org/10.1109/TAC.2021.3052751
    42. Holicki, T., Scherer, C. W., & Trimpe, S. (2021). Controller Design via Experimental Exploration with Robustness Guarantees. IEEE Control Syst. Lett., 5(2), Article 2. https://doi.org/10.1109/LCSYS.2020.3004506
    43. Holicki, T., & Scherer, C. W. (2021). Revisiting and Generalizing the Dual Iteration for Static and Robust Output-Feedback Synthesis. Int. J. Robust Nonlin., 1–33. https://doi.org/10.1002/rnc.5547
    44. Holzmüller, D., & Pflüger, D. (2021). Fast Sparse Grid Operations Using the Unidirectional Principle: A Generalized and Unified Framework. In H.-J. Bungartz, J. Garcke, & D. Pflüger (Eds.), Sparse Grids and Applications - Munich 2018 (pp. 69--100). Springer International Publishing.
    45. Hsiao, G. C., & Wendland, W. L. (2021). On the propagation of acoustic waves in a thermo-electro-magneto-elastic solid. Applicable Analysis, 101 (2022)(0), Article 0. https://doi.org/10.1080/00036811.2021.1986027
    46. Hsiao, G. C., & Wendland, W. L. (2021). Boundary integral equations. In Applied Mathematical Sciences (Vol. 164, p. xx+783). Springer, Cham. https://doi.org/10.1007/978-3-030-71127-6
    47. Aufgaben und Lösungen zur Höheren Mathematik 1. (2021). In K. V. Höllig & J. V. Hörner (Eds.), Springer eBook Collection (3rd ed. 2021.). https://doi.org/10.1007/978-3-662-63181-2
    48. Jentsch, T., & Weingart, G. (2021). Jacobi relations on naturally reductive spaces. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 59(1), Article 1. https://doi.org/10.1007/s10455-020-09740-7
    49. Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2021). Layer potential theory for the anisotropic Stokes system with variable L∞ symmetrically elliptic tensor coeffici. Math. Methods Appl. Sci., 44(12), Article 12. https://doi.org/10.1002/mma.7167
    50. Kollross, A. (2021). Polar actions on Damek-Ricci spaces. Differential Geometry and Its Applications, 76, 101753. https://doi.org/10.1016/j.difgeo.2021.101753
    51. Krämer, A., Maier, B., Rau, T., Huber, F., Klotz, T., Ertl, T., Göddeke, D., Mehl, M., Reina, G., & Röhrle, O. (2021). Multi-physics multi-scale HPC simulations of skeletal muscles. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’20: Transactions of the High Performance Computing Center, Stuttgart(HLRS) 2020. https://doi.org/10.1007/978-3-030-80602-6_13
    52. Kühnert, J., Göddeke, D., & Herschel, M. (2021, July). Provenance-integrated parameter selection and optimization in numerical simulations. 13th International Workshop on Theory and Practice OfProvenance (TaPP 2021). https://www.usenix.org/conference/tapp2021/presentation/kühnert
    53. Lang, R. (2021). On the eigenvalues of the non-self-adjoint Robin Laplacian on bounded domains and compact quantum graphs. [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-11428
    54. Leiteritz, R., Buchfink, P., Haasdonk, B., & Pflüger, D. (2021). Surrogate-data-enriched Physics-Aware Neural Networks.
    55. Magiera, J. (2021). A Molecular--Continuum Multiscale Solver for Liquid--Vapor Flow: Modeling and Numerical Simulation [Ph.D. Thesis]. https://doi.org/10.18419/opus-11797
    56. Magiera, J. (2021). A Molecular--Continuum Multiscale Solver for Liquid--Vapor Flow. Small Collaboration: Advanced Numerical Methods for Nonlinear Hyperbolic Balance Laws and Their Applications (Hybrid Meeting), 41. https://doi.org/10.14760/OWR-2021-41
    57. Magiera, J., & Rohde, C. (2021). Analysis and Numerics of Sharp and Diffuse Interface Models for Droplet Dynamics. In K. Schulte, C. Tropea, & B. Weigand (Eds.), Droplet Dynamics under Extreme Ambient Conditions. Springer.
    58. Makogin, V., Oesting, M., Rapp, A., & Spodarev, E. (2021). Long range dependence for stable random processes. J. Time Series Anal., 42(2), Article 2. https://doi.org/10.1111/jtsa.12560
    59. Massa, F., Ostrowski, L., Bassi, F., & Rohde, C. (2021). An artificial Equation of State based Riemann solver for a discontinuous Galerkin discretization of the incompressible Navier–Stokes equations. J. Comput. Phys., 110705. https://doi.org/10.1016/j.jcp.2021.110705
    60. Mehl, L., Beschle, C., Barth, A., & Bruhn, A. (2021). An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation. Proceedings of the International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), 140--152. https://doi.org/10.1007/978-3-030-75549-2_12
    61. Mel’nyk, T. (2021). Asymptotic approximations for eigenvalues and eigenfunctions of a spectral problem in a thin graph-like junction with a concentrated mass in the node. Analysis and Applications, 19(05), Article 05. https://doi.org/10.1142/S0219530520500219
    62. Michalowsky, S., Scherer, C., & Ebenbauer, C. (2021). Robust and structure exploiting optimisation algorithms: An integral quadratic constraint approach. International Journal of Control, 94(11), Article 11. https://doi.org/10.1080/00207179.2020.1745286
    63. Nonnenmacher, M., Reeb, D., & Steinwart, I. (2021). Which Minimizer Does My Neural Network Converge To? In N. Oliver, F. Pérez-Cruz, S. Kramer, J. Read, & J. A. Lozano (Eds.), Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 87--102). Springer International Publishing. https://doi.org/10.1007/978-3-030-86523-8_6
    64. Osorno, M., Schirwon, M., Kijanski, N., Sivanesapillai, R., Steeb, H., & Göddeke, D. (2021). A cross-platform, high-performance SPH toolkit for image-based flow simulations on the pore scale of porous media. Computer Physics Communications, 267(108059), Article 108059. https://doi.org/10.1016/j.cpc.2021.108059
    65. Rohde, C., & von Wolff, L. (2021). A ternary Cahn–Hilliard–Navier–Stokes model for two-phase flow with precipitation and dissolution. Mathematical Models and Methods in Applied Sciences, 31(01), Article 01. https://doi.org/10.1142/S0218202521500019
    66. Rörich, A., Werthmann, T. A., Göddeke, D., & Grasedyck, L. (2021). Bayesian inversion for electromyography using low-rank tensor formats. Inverse Problems, 37(5), Article 5. https://doi.org/10.1088/1361-6420/abd85a
    67. Rörich, A., Werthmann, T. A., Göddeke, D., & Grasedyck, L. (2021). Bayesian inversion for electromyography using low-rank tensor formats. Inverse Problems, 37(5), Article 5. https://doi.org/10.1088/1361-6420/abd85a
    68. Santin, G., & Haasdonk, B. (2021). Kernel methods for surrogate modeling. In P. Benner, W. Schilders, S. Grivet-Talocia, A. Quarteroni, G. Rozza, & L. M. Silveira (Eds.), Model Order Reduction: Vol. 1: System-and Data-Driven Methods and Algorithms (pp. 311–354). de Gruyter.
    69. Scherer, C., & Ebenbauer, C. (2021). Convex Synthesis of Accelerated Gradient Algorithms. SIAM Journal on Control and Optimization, 59(6), Article 6. https://doi.org/10.1137/21M1398598
    70. Schmalfuss, J., Riethmüller, C., Altenbernd, M., Weishaupt, K., & Göddeke, D. (2021). Partitioned coupling vs. monolithic block-preconditioning approaches for solving Stokes-Darcy systems. Proceedings of the International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS). https://doi.org/10.23967/coupled.2021.043
    71. Schricker, S., Monje, DC., Dippon, J., Kimmel, M., Alscher, MD., & Schanz, M. (2021). Physician-guided, hybrid genetic testing exerts promising effects on health-related behavior without compromising quality of life. Sci Rep., 2021 Apr 19;11(1), 8494. https://doi.org/10.1038/s41598-021-87821-8
    72. Stauch, G., Fritz, P., Rokai, R., Sediqi, A., Firooz, H., Voelker, HU., Weinhara, M., Mollin, J., Soudah, B., Dalquen, P., Brinckmann, F., & Dippon, J. (2021). The Importance of Clinical Data for the Diagnosis of Breast Tumours in North Afghanistan. Int. Jounal Breast Cancer, Jul 30;2021, 6625239. https://doi.org/10.1155/2021/6625239
    73. Steinwart, I., & Fischer, S. (2021). A Closer Look at Covering Number Bounds for Gaussian Kernels. J. Complexity, 62, 101513. https://doi.org/10.1016/j.jco.2020.101513
    74. Steinwart, I., & Ziegel, J. F. (2021). Strictly proper kernel scores and characteristic kernels on compact spaces. Appl. Comput. Harmon. Anal., 51, 510--542. https://doi.org/10.1016/j.acha.2019.11.005
    75. Strohbeck, P., Eggenweiler, E., & Rybak, I. (2021). Determination of the Beavers-Joseph slip coefficient for coupled Stokes/Darcy problems. Adv. Water Res. (Submitted). https://arxiv.org/abs/2106.15556
    76. Veenman, J., Scherer, C. W., Ardura, C., Bennani, S., Preda, V., & Girouart, B. (2021). IQClab: A new IQC based toolbox for robustness analysis and control design. IFAC-PapersOnline, 54(8), Article 8. https://doi.org/10.1016/j.ifacol.2021.08.583
    77. von Wolff, L., Weinhardt, F., Class, H., Hommel, J., & Rohde, C. (2021). Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling. Transport in Porous Media, 137(2), Article 2. https://doi.org/10.1007/s11242-021-01560-y
    78. Wenzel, T., Santin, G., & Haasdonk, B. (2021). A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability and uniform point distribution.
    79. Wenzel, T., Santin, G., & Haasdonk, B. (2021). Universality and Optimality of Structured Deep Kernel Networks. arXiv. https://doi.org/10.48550/ARXIV.2105.07228
    80. Wenzel, T., Santin, G., & Haasdonk, B. (2021). Analysis of target data-dependent greedy kernel algorithms: Convergence rates for f-, f P- and f/P-greedy. arXiv. https://doi.org/10.48550/ARXIV.2105.07411
    81. Wittwar, D., & Haasdonk, B. (n.d.). Convergence rates for matrix P-greedy variants. In Numerical mathematics and advanced applications---ENUMATH              2019 (Vol. 139, pp. 1195--1203). Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1\_119
    82. Zaverkin, V., Kästner, J., Holzmüller, D., & Steinwart, I. (2021). Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments. J. Chem. Theory Comput. https://doi.org/10.1021/acs.jctc.1c00527
  5. 2020

    1. Alla, A., Haasdonk, B., & Schmidt, A. (2020). Feedback control of parametrized PDEs via model order              reduction and dynamic programming principle. Adv. Comput. Math., 46(1), Article 1. https://doi.org/10.1007/s10444-020-09744-8
    2. Barberis, M. L., Moroianu, A., & Semmelmann, U. (2020). Generalized vector cross products and Killing forms on negatively curved manifolds. Geom. Dedicata, 205, 113--127. https://doi.org/10.1007/s10711-019-00467-9
    3. Barreau, M., Scherer, C. W., Gouaisbaut, F., & Seuret, A. (2020). Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis. IFAC-PapersOnline, 53(2), Article 2. https://www.sciencedirect.com/science/article/pii/S2405896320321297
    4. Barth, A., & Merkle, R. (2020). Subordinated Gaussian Random Fields in Elliptic Partial Differential Equations. ArXiv E-Prints, ArXiv:2011.09311 Math.NA.
    5. Barth, A., & Merkle, R. (2020). Subordinated Gaussian Random Fields. ArXiv E-Prints, ArXiv:2012.06353 Math.PR.
    6. Bastian, P., Altenbernd, M., Dreier, N.-A., Engwer, C., Fahlke, J., Fritze, R., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., Shegunov, N., & Turek, S. (2020). Exa-Dune - Flexible PDE Solvers, Numerical Methods and Applications. In H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, & W. E. Nagel (Eds.), Software for Exascale Computing -- SPPEXA 2016--2019 (pp. 225--269). Springer. https://doi.org/10.1007/978-3-030-47956-5_9
    7. Baumstark, S., Schneider, G., & Schratz, K. (2020). Effective numerical simulation of the Klein-Gordon-Zakharov system in the Zakharov limit. In Mathematics of wave phenomena. Selected papers based on the presentations at the conference, Karlsruhe, Germany, July 23--27, 2018 (pp. 37--48). Cham: Birkhäuser.
    8. Baumstark, S., Schneider, G., Schratz, K., & Zimmermann, D. (2020). Effective Slow Dynamics Models for a Class of Dispersive Systems. Journal of Dynamics and Differential Equations, 32(4), Article 4. https://doi.org/10.1007/s10884-019-09791-w
    9. Beck, A., Dürrwächter, J., Kuhn, T., Meyer, F., Munz, C.-D., & Rohde, C. (2020). $hp$-Multilevel Monte Carlo methods for uncertainty quantification of compressible flows. SIAM J. Sci. Comput., 42(4), Article 4. https://doi.org/10.1137/18M1210575
    10. Berberich, J., Koch, A., Scherer, C. W., & Allgöwer, F. (2020). Robust data-driven state-feedback design. 2020 American Control Conference (ACC), 1532–1538. https://doi.org/10.23919/acc45564.2020.9147320
    11. Berre, I., Boon, W. M., Flemisch, B., Fumagalli, A., Gläser, D., Keilegavlen, E., Scotti, A., Stefansson, I., Tatomir, A., Brenner, K., Burbulla, S., Devloo, P., Duran, O., Favino, M., Hennicker, J., Lee, I.-H., Lipnikov, K., Masson, R., Mosthaf, K., … Zulian, P. (2020). Verification benchmarks for single-phase flow in three-dimensional fractured porous media.
    12. Bitter, A. (2020). Virtual levels of multi-particle quantum systems and their implications for the Efimov effect [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-11315
    13. Blanke, S. E., Hahn, B. N., & Wald, A. (2020). Inverse problems with inexact forward operator: iterative regularization and application in dynamic imaging. Inverse Problems, 36(12), Article 12. https://doi.org/10.1088/1361-6420/abb5e1
    14. Brencher, L., & Barth, A. (2020). Hyperbolic Conservation Laws with Stochastic Discontinuous Flux Functions. International Conference on Finite Volumes for Complex Applications, 265--273.
    15. Bringedal, C., von Wolff, L., & Pop, I. S. (2020). Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments. Multiscale Modeling &amp$\mathsemicolon$ Simulation, 18(2), Article 2. https://doi.org/10.1137/19m1239003
    16. Brinker, J., & Wirth, J. (2020). Gelfand Triples for the Kohn–Nirenberg Quantization on Homogeneous Lie Groups. In Advances in Harmonic Analysis and Partial Differential Equations. (pp. 51–97). Birkhäuser. https://doi.org/10.1007/978-3-030-58215-9_3
    17. Buchfink, P., Haasdonk, B., & Rave, S. (2020). PSD-Greedy Basis Generation for Structure-Preserving Model Order Reduction of Hamiltonian Systems. In P. Frolkovič, K. Mikula, & D. Ševčovič (Eds.), Proceedings of the Conference Algoritmy 2020 (pp. 151--160). Vydavateľstvo SPEKTRUM. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/1577/829
    18. de Rijk, B., & Schneider, G. (2020). Global Existence and Decay in Nonlinearly Coupled Reaction-Diffusion-Advection Equations with Different Velocities. J. Differential Equations, 268(7), Article 7. https://doi.org/10.1016/j.jde.2019.09.056
    19. Díaz-Ramos, J. C., Domínguez-Vázquez, M., & Kollross, A. (2020). On homogeneous manifolds whose isotropy actions are polar. Manuscripta Mathematica, 161(1), Article 1. https://doi.org/10.1007/s00229-018-1077-1
    20. Eggenweiler, E., & Rybak, I. (2020). Interface conditions for arbitrary flows in coupled porous-medium and free-flow systems. In R. Klöfkorn, E. Keilegavlen, F. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (Vol. 323, pp. 345–353). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_31
    21. Escher, J., Knopf, P., Lienstromberg, C., & Matioc, B.-V. (2020). Stratified periodic water waves with singular density gradients. Ann. Mat. Pura Appl. (4), 199(5), Article 5. https://doi.org/10.1007/s10231-020-00950-1
    22. IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart,  Germany, May 22-25, 2018: MORCOS 2018. (2020). In J. Fehr & B. Haasdonk (Eds.), IUTAM Bookseries. Springer.
    23. Fischer, S., & Steinwart, I. (2020). Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm. J. Mach. Learn. Res., 205, Article 205.
    24. Fischer, S. (2020). Some new bounds on the entropy numbers of diagonal operators. J. Approx. Theory, 251, 105343. https://doi.org/10.1016/j.jat.2019.105343
    25. Geck, M. (2020). Green functions and Glauberman degree-divisibility. Annals of Mathematics, 192(1), Article 1. https://doi.org/10.4007/annals.2020.192.1.4
    26. Geck, M. (2020). On Jacob’s construction of the rational canonical form of a matrix. The Electronic Journal of Linear Algebra, 36(36), Article 36. https://doi.org/10.13001/ela.2020.5055
    27. Geck, M. (2020). Computing Green functions in small characteristic. Journal of Algebra, 561, 163--199. https://doi.org/10.1016/j.jalgebra.2019.12.016
    28. Geck, M. (2020). ChevLie: Constructing Lie algebras and Chevalley groups. Journal of Software for Algebra and Geometry, 10(1), Article 1. https://doi.org/10.2140/jsag.2020.10.41
    29. Geck, M., & Malle, G. (2020). The character theory of finite groups of Lie type. A guided tour. In Cambridge Studies in Advanced Mathematics (Vol. 187, p. ix+394). Cambridge University Press. https://doi.org/10.1017/9781108779081
    30. Advances in Harmonic Analysis and Partial Differential Equations. (2020). In V. Georgiev, T. Ozawa, M. Ruzhansky, & J. Wirth (Eds.), Trends in Mathematics. Birkhäuser. https://doi.org/10.1007/978-3-030-58215-9
    31. Giesselmann, J., Meyer, F., & Rohde, C. (2020). A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws. BIT Numerical Mathematics, 60(3), Article 3. https://doi.org/10.1007/s10543-019-00794-z
    32. Ginoux, N., Habib, G., Pilca, M., & Semmelmann, U. (2020). An Obata-type characterisation of Calabi metrics on line bundles. North-West. Eur. J. Math., 6, 119--136, i.
    33. Giraud, L., Rüde, U., & Stals, L. (2020). Resiliency in Numerical Algorithm Design for Extreme Scale Simulations (Dagstuhl Seminar 20101). Dagstuhl Reports, 10(3), Article 3. https://doi.org/10.4230/DagRep.10.3.1
    34. Griesemer, M., Hofacker, M., & Linden, U. (2020). From short-range to contact interactions in the 1d Bose gas. Math. Phys. Anal. Geom., 23(2), Article 2. https://doi.org/10.1007/s11040-020-09344-4
    35. Grunert, D., Fehr, J., & Haasdonk, B. (2020). Well-scaled, a-posteriori error estimation for model order reduction of large second-order mechanical systems. ZAMM, 100(8), Article 8. https://doi.org/10.1002/zamm.201900186
    36. Göddeke, D., Schirwon, M., & Borg, N. (2020). Smartphone-Apps im Mathematikstudium. https://doi.org/10.18419/darus-1147
    37. Haas, T., de Rijk, B., & Schneider, G. (2020). MODULATION EQUATIONS NEAR THE ECKHAUS BOUNDARY: THE KdV EQUATION. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 52(6), Article 6. https://doi.org/10.1137/19M1266873
    38. Haas, T., & Schneider, G. (2020). Failure of the N-wave interaction approximation without imposing    periodic boundary conditions. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 100(6), Article 6. https://doi.org/10.1002/zamm.201900230
    39. Haasdonk, B., Hamzi, B., Santin, G., & Wittwar, D. (2020). Greedy kernel methods for center manifold approximation. In Spectral and high order methods for partial differential              equations---ICOSAHOM 2018 (Vol. 134, pp. 95--106). Springer, Cham. https://doi.org/10.1007/978-3-030-39647-3\_6
    40. Hilder, B. (2020). Modulating traveling fronts for the Swift-Hohenberg equation in the case of an additional conservation law. Journal of Differential Equations, 269(5), Article 5. https://doi.org/10.1016/j.jde.2020.03.033
    41. Hilder, B., Peletier, M. A., Sharma, U., & Tse, O. (2020). An inequality connecting entropy distance, Fisher Information and large deviations. Stochastic Processes and Their Applications, 130(5), Article 5. https://doi.org/10.1016/j.spa.2019.07.012
    42. Holicki, T., & Scherer, C. W. (2020). Output-Feedback Synthesis for a Class of Aperiodic Impulsive Systems. IFAC-PapersOnline, 53(2), Article 2. https://doi.org/10.1016/j.ifacol.2020.12.981
    43. Holzmüller, D., & Steinwart, I. (2020). Training Two-Layer ReLU Networks with Gradient Descent is Inconsistent. Fakultät für Mathematik und Physik, Universität Stuttgart.
    44. Häufle, D. F. B., Wochner, I., Holzmüller, D., Driess, D., Günther, M., & Schmitt, S. (2020). Muscles Reduce Neuronal Information Load : Quantification of Control Effort in Biological vs. Robotic Pointing and Walking. Frontiers In Robotics and AI, 7, 77. https://doi.org/10.3389/frobt.2020.00077
    45. Jentsch, T., & Weingart, G. (2020). RIEMANNIAN AND KAHLERIAN NORMAL COORDINATES. ASIAN JOURNAL OF MATHEMATICS, 24(3), Article 3.
    46. Kennedy, J. B., & Lang, R. (2020). On the eigenvalues of quantum graph Laplacians with large complex δ couplings. Portugaliae Mathematica. A Journal of the Portuguese Mathematical Society, 77(2), Article 2.
    47. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (2020). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.02.012
    48. Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2020). Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier–Stokes systems with L∞ strongly elliptic coefficient tensor. Complex Variables and Elliptic Equations, 65(1), Article 1. https://doi.org/10.1080/17476933.2019.1631293
    49. Kollross, A. (2020). Octonions, triality, the exceptional Lie algebra F4 and polar actions on the Cayley hyperbolic plane. International Journal of Mathematics, 31(07), Article 07. https://doi.org/10.1142/s0129167x20500512
    50. Lienstromberg, C., & Müller, S. (2020). Local strong solutions to a quasilinear degenerate fourth-order thin-film equation. NoDEA Nonlinear Differential Equations Appl., 27(2), Article 2. https://doi.org/10.1007/s00030-020-0619-x
    51. Maier, D. (2020). BREATHER SOLUTIONS ON DISCRETE NECKLACE GRAPHS. OPERATORS AND MATRICES, 14(3), Article 3. https://doi.org/10.7153/oam-2020-14-48
    52. Maier, D. (2020). Construction of breather solutions for nonlinear Klein-Gordon equations    on periodic metric graphs. JOURNAL OF DIFFERENTIAL EQUATIONS, 268(6), Article 6. https://doi.org/10.1016/j.jde.2019.09.035
    53. Michalowsky, S., Scherer, C., & Ebenbauer, C. (2020). Robust and structure exploiting optimisation algorithms: An integral quadratic constraint approach. International Journal of Control, 2020, 1–24. https://doi.org/10.1080/00207179.2020.1745286
    54. Minorics, L. A. (2020). Spectral asymptotics for Krein-Feller operators with respect to V-variable Cantor measures. Forum Mathematicum, 32(1), Article 1. https://doi.org/10.1515/forum-2018-0188
    55. Nagy, P.-A., & Semmelmann, U. (2020). Conformal Killing forms in Kaehler geometry.
    56. Naveira, A. M., & Semmelmann, U. (2020). Conformal Killing forms on nearly Kähler manifolds. Differential Geom. Appl., 70, 101628, 9. https://doi.org/10.1016/j.difgeo.2020.101628
    57. Oesting, M., & Schnurr, A. (2020). Ordinal patterns in clusters of subsequent extremes of regularly varying time series. Extremes, 23(4), Article 4. https://doi.org/10.1007/s10687-020-00391-2
    58. Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian(3)Active Learning for the Gaussian Process Emulator Using    Information Theory. ENTROPY, 22(8), Article 8. https://doi.org/10.3390/e22080890
    59. Pelinovsky, D. E., & Schneider, G. (2020). The monoatomic FPU system as a limit of a diatomic FPU system. Appl. Math. Lett., 107, 7.
    60. Polyakova, A. P., Svetov, I. E., & Hahn, B. N. (2020). The Singular Value Decomposition of the Operators of the Dynamic Ray Transforms Acting on 2D Vector Fields. In Y. D. Sergeyev & D. E. Kvasov (Eds.), Numerical Computations: Theory and Algorithms (pp. 446--453). Springer International Publishing. https://doi.org/10.1007/978-3-030-40616-5_42
    61. Rigaud, G., & Hahn, B. N. (2020). Reconstruction algorithm for 3D Compton scattering imaging with incomplete data. Inverse Problems in Science and Engineering, 29(7), Article 7. https://doi.org/10.1080/17415977.2020.1815723
    62. Rybak, I., & Metzger, S. (2020). A dimensionally reduced Stokes-Darcy model for fluid flow in fractured porous media. Appl. Math. Comp., 384. https://doi.org/10.1016/j.amc.2020.125260
    63. Rösinger, C. A., & Scherer, C. W. (2020). Lifting to Passivity for $H_2$-Gain-Scheduling Synthesis with Full Block Scalings. IFAC-PapersOnline, 53(2), Article 2. https://doi.org/10.1016/j.ifacol.2020.12.570
    64. Rösinger, C. A., & Scherer, C. W. (2020). A Flexible Synthesis Framework of Structured Controllers for Networked Systems. IEEE Trans. Control Netw. Syst., 7(1), Article 1. https://doi.org/10.1109/TCNS.2019.2914411
    65. Schneider, G. (2020). The KdV approximation for a system with unstable resonances. Math. Methods Appl. Sci., 43(6), Article 6.
    66. Semmelmann, U., Wang, C., & Wang, M. Y.-K. (2020). On the linear stability of nearly Kähler 6-manifolds. Ann. Global Anal. Geom., 57(1), Article 1. https://doi.org/10.1007/s10455-019-09686-5
    67. Steinwart, I. (2020). Reproducing Kernel Hilbert Spaces Cannot Contain all Continuous Functions on a Compact Metric Space. Fakultät für Mathematik und Physik, Universität Stuttgart.
    68. Tielen, R., Möller, M., Göddeke, D., & Vuik, C. (2020). p-multigrid methods and their comparison to h-multigrid methods in Isogeometric Analysis. Computer Methods in Applied Mechanics and Engineering, 372, 113347. https://doi.org/10.1016/j.cma.2020.113347
    69. Vonica, A., Bhat, N., Phan, K., Guo, J., Iancu, L., Weber, J. A., Karger, A., Cain, J. W., Wang, E. C. E., DeStefano, G. M., O’Donnell-Luria, A. H., Christiano, A. M., Riley, B., Butler, S. J., & Luria, V. (2020). Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. Developmental Biology, 464(1), Article 1. https://doi.org/10.1016/j.ydbio.2020.03.015
  6. 2019

    1. Ammann, B., Kröncke, K., Weiss, H., & Witt, F. (2019). Holonomy rigidity for Ricci-flat metrics. Math. Z., 291(1–2), Article 1–2. https://doi.org/10.1007/s00209-018-2084-3
    2. Baggio, G., Zampieri, S., & Scherer, C. W. (2019). Gramian Optimization with Input-Power Constraints. 58th IEEE Conf. Decision and Control, 5686–5691. https://doi.org/10.1109/CDC40024.2019.9029169
    3. Bastian, P., Altenbernd, M., Dreier, N.-A., Engwer, C., Fahlke, J., Fritze, R., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., Shegunov, N., & Turek, S. (2019). Exa-Dune -- Flexible PDE Solvers, Numerical Methods and Applications.
    4. Bauer, R., Cummings, P., & Schneider, G. (2019). A model for the periodic water wave problem and its long wave amplitude equations. In Nonlinear water waves. An interdisciplinary interface. Based on the workshop held at the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria, November 27 -- December 7, 2017 (pp. 123--138). Cham: Birkhäuser.
    5. Bauer, R., Düll, W.-P., & Schneider, G. (2019). The Korteweg-de Vries, Burgers and Whitham limits for a spatially periodic Boussinesq model. Proc. R. Soc. Edinb., Sect. A, Math., 149(1), Article 1.
    6. Bhatt, A., Fehr, J., Grunert, D., & Haasdonk, B. (2019). A Posteriori Error Estimation in Model Order Reduction of Elastic Multibody Systems with Large Rigid Motion. In J. Fehr & B. Haasdonk (Eds.), IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. Springer. https://doi.org/DOI:10.1007/978-3-030-21013-7_7
    7. Bhatt, A., Fehr, J., & Haasdonk, B. (2019). Model order reduction of an elastic body under large rigid motion. Proceedings of ENUMATH 2017, Lect. Notes Comput. Sci. Eng.,(126), Article 126. https://doi.org/10.1007/978-3-319-96415-7\_23
    8. Bianchi, L. A., Blömker, D., & Schneider, G. (2019). Modulation equation and SPDEs on unbounded domains. Commun. Math. Phys., 371(1), Article 1.
    9. Brehler, M., Schirwon, M., Krummrich, P. M., & Göddeke, D. (2019). Simulation of Nonlinear Signal Propagation in Multimode Fibers on Multi-GPU Systems. Communications in Nonlinear Science and Numerical Simulation. https://doi.org/10.1016/j.cnsns.2019.105150
    10. Brünnette, T., Santin, G., & Haasdonk, B. (2019). Greedy Kernel Methods for Accelerating Implicit Integrators for Parametric ODEs. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop (Eds.), Numerical Mathematics and Advanced Applications - ENUMATH 2017 (pp. 889--896). Springer International Publishing.
    11. Buchfink, P., Bhatt, A., & Haasdonk, B. (2019). Symplectic Model Order Reduction with Non-Orthonormal Bases. Mathematical and Computational Applications, 24(2), Article 2. https://doi.org/10.3390/mca24020043
    12. Carlberg, K., Brencher, L., Haasdonk, B., & Barth, A. (2019). Data-Driven Time Parallelism via Forecasting. SIAM Journal on Scientific Computing, 41(3), Article 3. https://doi.org/10.1137/18M1174362
    13. Chirilus-Bruckner, M., Maier, D., & Schneider, G. (2019). Diffusive stability for periodic metric graphs. Math. Nachr., 292(6), Article 6.
    14. Colombo, R. M., LeFloch, P. G., Rohde, C., & Trivisa, K. (2019). Nonlinear Hyperbolic Problems: Modeling, Analysis, and Numerics. Oberwohlfach Rep., 16, Article 16. https://www.ems-ph.org/journals/show_issue.php?issn=1660-8933&vol=16&iss=2
    15. Conlon, R., Degeratu, A., & Rochon, F. (2019). Quasi-asymptotically conical Calabi-Yau manifolds. Geom. Topol., 23(1), Article 1. https://doi.org/10.2140/gt.2019.23.29
    16. Defant, A., Mastyo, M., Sánchez-Pérez, E. A., & Steinwart, I. (2019). Translation invariant maps on function spaces over locally compact groups. J. Math. Anal. Appl., 470, 795--820. https://doi.org/10.1016/j.jmaa.2018.10.033
    17. Denzel, A., Haasdonk, B., & Kästner, J. (2019). Gaussian Process Regression for Minimum Energy Path Optimization and Transition State Search. J. Phys. Chem. A, 123(44), Article 44. https://doi.org/10.1021/acs.jpca.9b08239
    18. Engelke, S., de Fondeville, R., & Oesting, M. (2019). Extremal behaviour of aggregated data with an application to downscaling. Biometrika, 106(1), Article 1. https://doi.org/10.1093/biomet/asy052
    19. Farooq, M., & Steinwart, I. (2019). Learning Rates for Kernel-Based Expectile Regression. Mach. Learn., 108, 203--227. https://doi.org/10.1007/s10994-018-5762-9
    20. Föll, R., Haasdonk, B., Hanselmann, M., & Ulmer, H. (2019). Deep Recurrent Gaussian Process with Variational Sparse Spectrum Approximation. https://openreview.net/forum?id=BkgosiRcKm
    21. Geck, M. (2019). Eigenvalues and Polynomial Equations. The American Mathematical Monthly, 126(10), Article 10. https://doi.org/10.1080/00029890.2019.1651168
    22. Griesemer, M., & Linden, U. (2019). Spectral theory of the Fermi polaron. Ann. Henri Poincaré, 20(6), Article 6. https://doi.org/10.1007/s00023-019-00796-1
    23. Gyorfi, L., Henze, N., & Walk, H. (2019). The Limit Distribution Of The Maximum Probability Nearest-Neighbour Ball. Journal of Applied Probability, 56(2), Article 2. https://doi.org/10.1017/jpr.2019.37
    24. Györfi, L., & Walk, H. (2019). Nearest neighbor based conformal prediction. Annales de l’ISUP, 63(2–3), Article 2–3. https://hal.science/hal-03603867
    25. Hahn, B. N., & Kienle Garrido, M.-L. (2019). An efficient reconstruction approach for a class of dynamic imaging operators. Inverse Problems, 35(9), Article 9. https://doi.org/10.1088/1361-6420/ab178b
    26. Hansmann, M., Kohler, M., & Walk, H. (2019). On the strong universal consistency of local averaging regression    estimates (vol 71, pg 1233, 2019). ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 71(5), Article 5. https://doi.org/10.1007/s10463-018-0687-4
    27. Heil, K., & Jentsch, T. (2019). A special class of symmetric Killing 2-tensors. JOURNAL OF GEOMETRY AND PHYSICS, 138, 103–123. https://doi.org/10.1016/j.geomphys.2018.12.009
    28. Holicki, T., & Scherer, C. W. (2019). A Homotopy Approach for Robust Output-Feedback Synthesis. Proc. 27th. Med. Conf. Control Autom., 87–93. https://doi.org/10.1109/MED.2019.8798536
    29. Holicki, T., & Scherer, C. W. (2019). Stability analysis and output-feedback synthesis of hybrid systems affected by piecewise constant parameters via dynamic resetting scalings. Nonlinear Analysis: Hybrid Systems, 34, 179--208. https://doi.org/10.1016/j.nahs.2019.06.003
    30. Homma, Y., & Semmelmann, U. (2019). The Kernel of the Rarita-Schwinger Operator on Riemannian Spin Manifolds. Comm. Math. Phys., 370(3), Article 3. https://doi.org/10.1007/s00220-019-03324-8
    31. Aufgaben und Lösungen zur Höheren Mathematik 1. (2019). In K. V. Höllig & J. V. Hörner (Eds.), SpringerLink. Bücher (2. Auflage, Vol. 1). https://doi.org/10.1007/978-3-662-58445-3
    32. Kluth, T., Hahn, B. N., & Brandt, C. (2019). Spatio-temporal concentration reconstruction using motion priors in magnetic particle imaging. Proc. Int. Workshop Magnetic Particle Imaging.
    33. Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2019). Newtonian and single layer potentials for the Stokes system with L∞ coefficients and the exterior Dirichlet problem. In Analysis as a life (pp. 237--260). Birkhäuser/Springer, Cham. https://doi.org/10.1007/978-3-030-02650-9\_12
    34. Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2019). Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier–Stokes systems with L∞ strongly elliptic coefficient tensor. Complex Variables and Elliptic Equations, 65(1), Article 1. https://doi.org/10.1080/17476933.2019.1631293
    35. Kohr, M., & Wendland, W. L. (2019). Boundary value problems for the Brinkman system with L∞ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach. Journal de Mathématiques Pures et Appliquées, 131, Article 131. https://doi.org/10.1016/j.matpur.2019.04.002
    36. Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., Wittwar, D., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2019). Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario. Computational Geosciences, 23(2), Article 2. https://doi.org/10.1007/s10596-018-9785-x
    37. Mazzeo, R., Swoboda, J., Weiss, H., & Witt, F. (2019). Asymptotic geometry of the Hitchin metric. Commun. Math. Phys., 367(1), Article 1. https://doi.org/10.1007/s00220-019-03358-y
    38. Mücke, N., & Steinwart, I. (2019). Empirical Risk Minimization in the Interpolating Regime with Application to Neural Network Learning. Fakultät für Mathematik und Physik, Universität Stuttgart.
    39. Oesting, M., Schlather, M., & Schillings, C. (2019). Sampling sup-normalized spectral functions for Brown-Resnick processes. Stat, 8, e228, 11. https://doi.org/10.1002/sta4.228
    40. Ostrowski, L., & Massa, F. (2019). An incompressible-compressible approach for droplet impact. In G. Cossali & S. Tonini (Eds.), Proceedings of the DIPSI Workshop 2019: Droplet ImpactPhenomena & Spray Investigations, Bergamo, Italy, 17th May 2019 (pp. 18–21). Università degli studi di Bergamo. https://doi.org/10.6092/DIPSI2019_pp18-21
    41. Rösinger, C. A., & Scherer, C. W. (2019). A Scalings Approach to $H_2$-Gain-Scheduling Synthesis without Elimination. IFAC-PapersOnLine, 52(28), Article 28. https://doi.org/10.1016/j.ifacol.2019.12.347
    42. Santin, G., & Haasdonk, B. (2019). Kernel Methods for Surrogate Modelling. University of Stuttgart.
    43. Santin, G., & Haasdonk, B. (2019). Kernel Methods for Surrogate Modeling (ArXiv No. 1907.10556; Issue 1907.10556). https://arxiv.org/abs/1907.10556
    44. Santin, G., Wittwar, D., & Haasdonk, B. (2019). Sparse approximation of regularized kernel interpolation by greedy algorithms.
    45. Schanz, M., Wasser, C., Allgaeuer, S., Schricker, S., Dippon, J., Alscher, MD., & Kimmel, M. (2019). Urinary TIMP-2·IGFBP7-guided randomized controlled intervention trial to prevent acute kidney injury in the emergency department. Transplant., 2019 Nov 1;34(11), 1902–1909. https://doi.org/10.1093/ndt/gfy186
    46. Schmidt, A., Wittwar, D., & Haasdonk, B. (2019). Rigorous and effective a-posteriori error bounds for nonlinear problems -- Application to RB methods. Advances in Computational Mathematics. https://doi.org/10.1007/s10444-019-09730-9
    47. Schneider, G. (2019). The Zakharov limit of Klein-Gordon-Zakharov like systems in case of analytic solutions. Applicable Analysis. https://doi.org/10.1080/00036811.2019.1695785
    48. Schricker, S., Heider, T., Schanz, M., Dippon, J., Alscher, MD., Weiss, H., Mettang, T., & Kimmel, M. (2019). Strong Associations Between Inflammation, Pruritus and Mental Health in Dialysis Patients. Acta Derm Venereol., 2019 May 1;99(6), 524–529. https://doi.org/10.2340/00015555-3128
    49. Semmelmann, U., & Weingart, G. (2019). The standard Laplace operator. Manuscripta Math., 158(1–2), Article 1–2. https://doi.org/10.1007/s00229-018-1023-2
    50. Seus, D., Radu, F. A., & Rohde, C. (2019). A linear domain decomposition method for two-phase flow in porous media. Numerical Mathematics and Advanced Applications ENUMATH 2017, 603–614. https://doi.org/10.1007/978-3-319-96415-7_55
    51. Steinwart, I. (2019). Convergence Types and Rates  in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties. Potential Anal., 51, 361--395. https://doi.org/10.1007/s11118-018-9715-5
    52. Steinwart, I. (2019). A Sober Look at Neural Network Initializations. Fakultät für Mathematik und Physik, Universität Stuttgart.
    53. Wenzel, T., Santin, G., & Haasdonk, B. (2019). A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability & uniform point distribution.
    54. Wittwar, D., & Haasdonk, B. (2019). Greedy Algorithms for Matrix-Valued Kernels. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop (Eds.), Numerical Mathematics and Advanced Applications ENUMATH 2017 (pp. 113--121). Springer International Publishing.
    55. Wittwar, D., Santin, G., & Haasdonk, B. (2019). Part II on matrix valued kernels including analysis.
    56. Zhang, R., Kyriss, T., Dippon, J., Boedeker, E., & Friedel, G. (2019). Preoperative serum lactate dehydrogenase level as a predictor of major omplications following thoracoscopic lobectomy: a propensity-adjusted analysis. European Journal of Cardio-Thoracic Surgery, 56(2), Article 2. https://doi.org/10.1093/ejcts/ezz027
    57. Zhang, R., Dippon, J., & Friedel, G. (2019). Refined risk stratification for thoracoscopic lobectomy or segmentectomy. Journal of Thoracic Disease, 11(1), Article 1. https://doi.org/10.21037/jtd.2018.12.44
    58. Zhang R, Dippon J, F. G. (2019). Refined risk stratification for thoracoscopic lobectomy or segmentectomy. Dis., J Thorac, 2019 Jan;11(1), :222-230. https://doi.org/10.21037/jtd.2018.12.44
  7. 2018

    1. Afkham, B. M., Bhatt, A., Haasdonk, B., & Hesthaven, J. S. (2018). Symplectic Model-Reduction with a Weighted Inner Product.
    2. Babak, M. Afkham., Bhatt, A., Haasdonk, B., & Hesthaven, J. S. (2018). Symplectic Model-Reduction with a Weighted Inner Product.
    3. Barth, A., & Stein, A. (2018). Approximation and simulation of infinite-dimensional Levy processes. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 6(2), Article 2. https://doi.org/10.1007/s40072-017-0109-2
    4. Barth, A., & Stein, A. (2018). A Study of Elliptic Partial Differential Equations with Jump Diffusion    Coefficients. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 6(4), Article 4. https://doi.org/10.1137/17M1148888
    5. Barth, A., & Stüwe, T. (2018). Weak convergence of Galerkin approximations of stochastic partial  differential equations driven by additive Lévy noise. Math. Comput. Simulation, 143, 215--225. https://doi.org/10.1016/j.matcom.2017.03.007
    6. Bhatt, A., Fehr, J., & Hassdonk, B. (2018). Model Order Reduction of an Elastic Body under Large Rigid Motion. Proceedings of ENUMATH 2017, Voss, Norway.
    7. Bhatt, A., & Haasdonk, B. (2018). Certified and structure-preserving model order reduction of EMBS. In RAMSA 2017, New Delhi.
    8. Bhatt, A., Haasdonk, B., & Moore, B. E. (2018). Structure-preserving Integration and Model Order Reduction.
    9. Blaschzyk, I., & Steinwart, I. (2018). Improved Classification Rates under Refined Margin Conditions. Electron. J. Stat., 12, 793--823. https://doi.org/10.1214/18-EJS1406
    10. Brehler, M., Schirwon, M., Göddeke, D., & Krummrich, P. (2018, July). Modeling the Kerr-Nonlinearity in Mode-Division Multiplexing Fiber  Transmission Systems on GPUs. Proceedings of Advanced Photonics 2018.
    11. Brünnette, T., Santin, G., & Haasdonk, B. (2018). Greedy kernel methods for accelerating implicit integrators for parametric ODEs. Proc. ENUMATH 2017.
    12. Buchfink, P. (2018). Structure-preserving Model Reduction for Elasticity [Diploma thesis].
    13. De Marchi, S., Iske, A., & Santin, G. (2018). Image reconstruction from scattered Radon data by weighted positive  definite kernel functions. Calcolo, 55(1), Article 1. https://doi.org/10.1007/s10092-018-0247-6
    14. de Rijk, B. (2018). Spectra and stability of spatially periodic pulse patterns II: the critical spectral curve. SIAM J. Math. Anal., 50(2), Article 2. https://doi.org/10.1137/17M1127594
    15. de Rijk, B., & Sandstede, B. (2018). Diffusive stability against nonlocalized perturbations of planar wave trains in reaction-diffusion systems. J. Differential Equations, 265(10), Article 10. https://doi.org/10.1016/j.jde.2018.07.011
    16. Degeratu, A., & Mazzeo, R. (2018). Fredholm theory for elliptic operators on quasi-asymptotically conical spaces. Proc. Lond. Math. Soc. (3), 116(5), Article 5. https://doi.org/10.1112/plms.12105
    17. Devroye, L., Gyorfi, L., Lugosi, G., & Walk, H. (2018). A nearest neighbor estimate of the residual variance. ELECTRONIC JOURNAL OF STATISTICS, 12(1), Article 1. https://doi.org/10.1214/18-EJS1438
    18. Dibak, C., Haasdonk, B., Schmidt, A., Dürr, F., & Rothermel, K. (2018). Enabling interactive mobile simulations through distributed reduced models. Pervasive and Mobile Computing, Elsevier BV, 45, 19--34. https://doi.org/10.1016/j.pmcj.2018.02.002
    19. Doelman, A., Rademacher, J., de Rijk, B., & Veerman, F. (2018). Destabilization Mechanisms of Periodic Pulse Patterns Near a Homoclinic Limit. SIAM J. Appl. Dyn. Syst., 17(2), Article 2. https://doi.org/10.1137/17M1122840
    20. Doering, M., Gyorfi, L., & Walk, H. (2018). Rate of Convergence of k-Nearest-Neighbor Classification Rule. JOURNAL OF MACHINE LEARNING RESEARCH, 18.
    21. Dreier, N.-A., Altenbernd, M., Engwer, C., & Göddeke, D. (2018, March). A high-level C++ approach to manage local errors, asynchrony and  faults in an MPI application. Proceedings of 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2018).
    22. Düll, W.-P. (2018). On the mathematical description of time-dependent surface water waves. Jahresber. Dtsch. Math.-Ver., 120(2), Article 2. https://doi.org/10.1365/s13291-017-0173-6
    23. Düll, W.-P., & Heß, M. (2018). Existence of long time solutions and validity of the nonlinear Schrödinger approximation for a quasilinear dispersive equation. J. Differential Equations, 264(4), Article 4. https://doi.org/10.1016/j.jde.2017.10.031
    24. Düll, W.-P., Hilder, B., & Schneider, G. (2018). Analysis of the embedded cell method in 1D for the numerical homogenization of metal-ceramic composite materials. J. Appl. Anal., 24(1), Article 1.
    25. Düll, W.-P., Hilder, B., & Schneider, G. (2018). Analysis of the embedded cell method in 1D for the numerical homogenization of metal-ceramic composite materials. J. Appl. Anal., 24(1), Article 1. https://doi.org/10.1515/jaa-2018-0007
    26. Engwer, C., Altenbernd, M., Dreier, N.-A., & Göddeke, D. (2018, March). A high-level C++ approach to manage local errors, asynchrony and  faults in an MPI application. Proceedings of the 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2018).
    27. Engwer, C., Altenbernd, M., Dreier, N.-A., & G�ddeke, D. (2018, March). A high-level C++ approach to manage local errors, asynchrony and  faults in an MPI application. Proceedings of the 26th Euromicro International Conference on Parallel,  Distributed and Network-Based Processing (PDP 2018).
    28. Escher, J., & Lienstromberg, C. (2018). Travelling waves in dilatant non-Newtonian thin films. J. Differential Equations, 264(3), Article 3. https://doi.org/10.1016/j.jde.2017.10.015
    29. Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2018). Approximate Riemann solver for compressible liquid vapor flow with  phase transition and surface tension. Comput. & Fluids, 169, 169–185. http://dx.doi.org/10.1016/j.compfluid.2017.03.026
    30. Fehr, J., Grunert, D., Bhatt, A., & Haasdonk, B. (2018). A Sensitivity Study of Error Estimation in Reduced Elastic Multibody Systems. Proceedings of MATHMOD 2018, Vienna, Austria.
    31. Fritz, P., Dippon, J., Müller, S., Goletz, S., Trautmann, C., Pappas, X., Ott, G., Brauch, H., Schwab, M., Winter, S., Mürdter, T., Brinkmann, F., Faisst, S., Rössle, S., Gerteis, A., & Friedel, G. (2018). Is Mistletoe Treatment Beneficial in Invasive Breast Cancer? A New Approach to an Unresolved Problem. Anticancer Research, 38(3), Article 3. https://doi.org/10.21873/anticanres.12388
    32. Fritzen, F., Haasdonk, B., Ryckelynck, D., & Schöps, S. (2018). An algorithmic comparison of the Hyper-Reduction and the Discrete  Empirical Interpolation Method for a nonlinear thermal problem. Math. Comput. Appl. 2018, 23(1), Article 1. https://doi.org/doi:10.3390/mca23010008
    33. Geck, M. (2018). A first guide to the character theory of finite groups of Lie type. Local Representation Theory and Simple Groups (Eds. R. Kessar, G. Malle, D. Testerman), 63--106. https://doi.org/10.4171/185-1/3
    34. Geck, M. (2018). On the values of unipotent characters in bad characteristic. Rendiconti Del Seminario Matematico Della Università Di Padova, 141, 37--63. https://doi.org/10.4171/rsmup/14
    35. Georgiev, V., & Wirth, J. (2018). Zero resonances for localised potentials. Journal of Mathematical Physics, 59(7), Article 7. https://doi.org/10.1063/1.5027717
    36. Giesselmann, J., Kolbe, N., Lukacova-Medvidova, M., & Sfakianakis, N. (2018). Existence and uniqueness of global classical solutions to a two species  cancer invasion haptotaxis model. Accepted for Publication in Discrete Contin. Dyn. Syst. Ser. B. https://arxiv.org/abs/1704.08208
    37. Gimperlein, H., Meyer, F., �zdemir, C., Stark, D., & Stephan, E. P. (2018). Boundary elements with mesh refinements for the wave equation. Numer. Math., (accepted). https://arxiv.org/abs/1801.09736
    38. Gimperlein, H., Meyer, F., �zdemir, C., & Stephan, E. P. (2018). Time domain boundary elements for dynamic contact problems. Computer Methods in Applied Mechanics and Engineering, 333, 147–175. https://doi.org/10.1016/j.cma.2018.01.025
    39. Griesemer, M., & Wünsch, A. (2018). On the domain of the Nelson Hamiltonian. J. Math. Phys., 59(4), Article 4. https://doi.org/10.1063/1.5018579
    40. Griesemer, M., & Linden, U. (2018). Stability of the two-dimensional Fermi polaron. Lett. Math. Phys., 108(8), Article 8. https://doi.org/10.1007/s11005-018-1055-2
    41. Guo, Y., & Scherer, C. W. (2018). Robust Gain-Scheduled Controller Design with a Hierarchical Structure. IFAC-PapersOnline, 51(25), Article 25. https://doi.org/10.1016/j.ifacol.2018.11.110
    42. Haasdonk, B., Hamzi, B., Santin, G., & Wittwar, D. (2018). Greedy Kernel Methods for Center Manifold Approximation (ArXiv No. 1810.11329; Issue 1810.11329).
    43. Haasdonk, B., & Santin, G. (2018). Greedy Kernel Approximation for Sparse Surrogate Modeling. In W. Keiper, A. Milde, & S. Volkwein (Eds.), Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing (pp. 21--45). Springer International Publishing. https://doi.org/10.1007/978-3-319-75319-5_2
    44. Haesaert, S., Weiland, S., & Scherer, C. W. (2018). A separation theorem for guaranteed $H_2$ performance through matrix inequalities. Automatica, 96, 306–313. https://doi.org/10.1016/j.automatica.2018.07.002
    45. Hang, H., Steinwart, I., Feng, Y., & Suykens, J. A. K. (2018). Kernel Density Estimation for Dynamical Systems. J. Mach. Learn. Res., 19, 1--49.
    46. Harbrecht, H., Wendland, W. L., & Zorii, N. (2018). Minimal energy problems for strongly singular Riesz kernels. Mathematische Nachrichten, 291, Article 291. https://doi.org/10.1002/mana.201600024
    47. Holicki, T., & Scherer, C. W. (2018). Output-Feedback Gain-Scheduling Synthesis for a Class of Switched Systems via Dynamic Resetting $D$-Scalings. 57th IEEE Conf. Decision and Control, 6440–6445. https://doi.org/10.1109/CDC.2018.8619128
    48. Hsiao, G. C., Steinbach, O., & Wendland, W. L. (2018). Boundary Element Methods: Foundation and Error Analysis. Encyclopedia of Computational Mechanics Second Edition, 62. https://doi.org/10.1002/9781119176817.ecm2007
    49. Kohler, M., Krzyzak, A., Tent, R., & Walk, H. (2018). Nonparametric quantile estimation using importance sampling. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 70(2), Article 2. https://doi.org/10.1007/s10463-016-0595-4
    50. Kohr, M., & Wendland, W. L. (2018). Layer Potentials and Poisson Problems for the Nonsmooth Coefficient Brinkman System in Sobolev and Besov Spaces. Journal of Mathematical Fluid Mechanics, 4(20), Article 20. https://doi.org/10.1007/s00021-018-0394-1
    51. Kohr, M., & Wendland, W. L. (2018). Variational approach for the Stokes and Navier–Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds. Calculus of Variations and Partial Differential Equations, 57:165. https://doi.org/10.1007/s00526-018-1426-7
    52. Kovar\’ık, H., Ruszkowski, B., & Weidl, T. (2018). Melas-type bounds for the Heisenberg Laplacian on bounded domains. Journal of Spectral Theory, 8(2), Article 2. https://doi.org/10.4171/jst/200
    53. Kraemer, B., Scharpf, M., Keckstein, S., Dippon, J., Tsaousidis, C., Brunecker, K., Enderle, MD., Neugebauer, A., Nuessle, D., Fend, F., Brucker, S., Taran, FA., Kommoss, S., & Rothmund, R. (2018). A prospective randomized experimental study to investigate the peritoneal adhesion formation after waterjet injection and argon plasma coagulation (HybridAPC) in a rat model. Arch Gynecol Obstet., 2018, Apr;297(4), 961–967. https://doi.org/10.1007/s00404-018-4661-4
    54. Kuhn, T., Dürrwächter, J., Beck, A., Munz, C.-D., Meyer, F., & Rohde, C. (2018). Uncertainty Quantification for Direct Aeroacoustic Simulations of  Cavity Flows: Vol. (submitted). http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1891
    55. Köppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2018). Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods. International Journal for Numerical Methods in Biomedical Engineering, 34(8), Article 8. https://doi.org/10.1002/cnm.3095
    56. K�ppel, M., Martin, V., Jaffré, J., & Roberts, J. E. (2018). A Lagrange multiplier method for a discrete fracture model for flow  in porous media. (Submitted). https://hal.archives-ouvertes.fr/hal-01700663v2
    57. K�ppel, M., Martin, V., & Roberts, J. E. (2018). A stabilized Lagrange multiplier finite-element method for flow in  porous media with fractures. (Submitted). https://hal.archives-ouvertes.fr/hal-01761591
    58. Langer, A. (2018). Locally adaptive total variation for removing mixed Gaussian-impulse  noise. International Journal of Computer Mathematics, 19. https://www.tandfonline.com/doi/abs/10.1080/00207160.2018.1438603
    59. Langer, A. (2018). Overlapping domain decomposition methods for total variation denoising. http://people.ricam.oeaw.ac.at/a.langer/publications/DDfTV.pdf
    60. Langer, A. (2018). Investigating the influence of box-constraints on the solution of  a total variation model via an efficient primal-dual method. Journal of Imaging, 4, 1. http://www.mdpi.com/2313-433X/4/1/12
    61. Maboudi Afkham, B., & Hesthaven, J. S. (2018). Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems. Journal of Scientific Computing, 1–19. https://doi.org/10.1007/s10915-018-0653-6
    62. Meyer, F., Schlachter, L., & Schneider, F. (2018). A hyperbolicity-preserving discontinuous stochastic Galerkin scheme  for uncertain hyperbolic systems of equations. https://arxiv.org/abs/1805.10177
    63. Miller, C. T., Gray, W. G., Kees, C. E., Rybak, I. V., & Shepherd, B. J. (2018). Modeling sediment transport in three-phase surface water systems. J. Hydraul. Res. (Accepted).
    64. Oesting, M. (2018). Equivalent representations of max-stable processes via $\ell^p$-norms. J. Appl. Probab., 55(1), Article 1. https://doi.org/10.1017/jpr.2018.5
    65. Oesting, M., Bel, L., & Lantuéjoul, C. (2018). Sampling from a max-stable process conditional on a homogeneous functional with an application for downscaling climate data. Scand. J. Stat., 45(2), Article 2. https://doi.org/10.1111/sjos.12299
    66. Oesting, M., Schlather, M., & Zhou, C. (2018). Exact and fast simulation of max-stable processes on a compact set using the normalized spectral representation. Bernoulli, 24(2), Article 2. https://doi.org/10.3150/16-BEJ905
    67. Oesting, M., & Stein, A. (2018). Spatial modeling of drought events using max-stable processes. Stoch. Env. Res. Risk A., 32(1), Article 1. https://doi.org/10.1007/s00477-017-1406-z
    68. Oesting, M., & Strokorb, K. (2018). Efficient simulation of Brown-Resnick processes based on variance reduction of Gaussian processes. Adv. in Appl. Probab., 50(4), Article 4. https://doi.org/10.1017/apr.2018.54
    69. Raja Sekhar, G. P., Sharanya, V., & Rohde, C. (2018). Effect of surfactant concentration and interfacial slip on the flow  past a viscous drop at low surface P�clet number. Erscheint Bei Int. J. Multiph. Flow. http://arxiv.org/abs/1609.03410
    70. Rigaud, G., & Hahn, B. N. (2018). 3D Compton scattering imaging and contour reconstruction for a class of Radon transforms. Inverse Problems, 34(7), Article 7. https://doi.org/10.1088/1361-6420/aabf0b
    71. Rohde, C., & Zeiler, C. (2018). On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase  Flows with Surface Tension. Z. Angew. Math. Phys., 69:76. https://doi.org/10.1007/s00033-018-0958-1
    72. Rohde, C. (2018). Fully resolved compressible two-phase flow : modelling, analytical and numerical issues. In M. Bulicek, E. Feireisl, & M. Pokorný (Eds.), New trends and results in mathematical description of fluid flows (pp. 115–181). Birkhäuser. https://doi.org/10.1007/978-3-319-94343-5
    73. Ruiz, P. A., Freiberg, U. R., & Kigami, J. (2018). Completely symmetric resistance forms on the stretched Sierpinski gasket. JOURNAL OF FRACTAL GEOMETRY, 5(3), Article 3. https://doi.org/10.4171/JFG/61
    74. Santin, G., Wittwar, D., & Haasdonk, B. (2018). Greedy regularized kernel interpolation (ArXiv Preprint No. 1807.09575; Issue 1807.09575). University of Stuttgart.
    75. Scherer, C. W., & Holicki, T. (2018). An IQC theorem for relations: Towards stability analysis of data-integrated systems. IFAC-PapersOnline, 51(25), Article 25. https://doi.org/10.1016/j.ifacol.2018.11.138
    76. Scherer, C. W., & Veenman, J. (2018). Stability analysis by dynamic dissipation inequalities: On merging frequency-domain techniques with time-domain conditions. Syst. Control Lett., 121, 7–15. https://doi.org/10.1016/j.sysconle.2018.08.005
    77. Schmidt, A., & Haasdonk, B. (2018). Data-driven surrogates of value functions and applications to feedback control for dynamical systems. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1766
    78. Schmidt, A., Wittwar, D., & Haasdonk, B. (2018). Rigorous and effective a-posteriori error bounds for nonlinear problems -- Application to RB methods [SimTech Preprint]. University of Stuttgart.
    79. Schmidt, A., & Haasdonk, B. (2018). Reduced basis approximation of large scale parametric algebraic Riccati equations. ESAIM: Control, Optimisation and Calculus of Variations, 24(1), Article 1. https://doi.org/10.1051/cocv/2017011
    80. Schuster, T., Hahn, B., & Burger, M. (2018). Dynamic inverse problems: modelling—regularization—numerics. Inverse Problems, 34(4), Article 4. https://doi.org/10.1088/1361-6420/aab0f5
    81. Seus, D., Mitra, K., Pop, I. S., Radu, F. A., & Rohde, C. (2018). A linear domain decomposition method for partially saturated flow  in porous media. Comp. Methods in Appl. Mech. Eng, 333, 331--355. https://doi.org/10.1016/j.cma.2018.01.029
    82. Sharanya, V., Sekhar, G. P. R., & Rohde, C. (2018). The low surface Péclet number regime for surfactant-laden viscous droplets: Influence of surfactant concentration, interfacial slip effects and cross migration. Int. J. of Multiph. Flow, 107, 82–103. https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.008
    83. Wittwar, D., Santin, G., & Haasdonk, B. (2018). Interpolation with uncoupled separable matrix-valued kernels. ArXiv E-Prints.
    84. Wittwar, D., & Haasdonk, B. (2018). Greedy Algorithms for Matrix-Valued Kernels. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1773
    85. Zhang, R., Kyriss, T., Dippon, J., Ciupa, S., Boedeker, E., & Friedel, G. (2018). Impact of comorbidity burden on morbidity following horacoscopic lobectomy: a propensity-matched analysis. J Thorac Dis., 2018 Mar;10(3), 1806–1814. https://doi.org/10.21037/jtd.2018.02.62
    86. Zhang, R., Kyriss, T., Dippon, J., Hansen, M., Boedeker, E., & Friedel, G. (2018). American Society of Anesthesiologists physical status facilitates risk stratification of elderly patients undergoing thoracoscopic lobectomy. European Journal of Cardio-Thoracic Surgery, 53(5), Article 5. https://doi.org/10.1093/ejcts/ezx436
  8. 2017

    1. Afkham, B., & Hesthaven, J. (2017). Structure Preserving Model Reduction of Parametric Hamiltonian Systems. SIAM Journal on Scientific Computing, 39(6), Article 6. https://doi.org/10.1137/17M1111991
    2. Alkämper, M., & Klöfkorn, R. (2017). Distributed Newest Vertex Bisection. Journal of Parallel and Distributed Computing, 104, 1–11. http://dx.doi.org/10.1016/j.jpdc.2016.12.003
    3. Alkämper, M., Klöfkorn, R., & Gaspoz, F. (2017). A Weak Compatibility Condition for Newest Vertex Bisection in any  Dimension. http://arxiv.org/abs/1711.03141
    4. Alkämper, M., & Langer, A. (2017). Using DUNE-ACFem for Non-smooth Minimization of Bounded Variation  Functions. Archive of Numerical Software, 5(1), Article 1. https://journals.ub.uni-heidelberg.de/index.php/ans/article/view/27475
    5. Alk�mper, M., & Klofkorn, R. (2017). Distributed Newest Vertex Bisection. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 104, 1–11. https://doi.org/10.1016/j.jpdc.2016.12.003
    6. Alla, A., Gunzburger, M., Haasdonk, B., & Schmidt, A. (2017). Model order reduction for the control of parametrized partial differential equations via dynamic programming principle. University of Stuttgart.
    7. Alla, A., Haasdonk, B., & Schmidt, A. (2017). Feedback control of parametrized PDEs via model order reduction and  dynamic programming principle. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1765
    8. Alla, A., Schmidt, A., & Haasdonk, B. (2017). Model Order Reduction Approaches for Infinite Horizon Optimal Control  Problems via the HJB Equation. In P. Benner, M. Ohlberger, A. Patera, G. Rozza, & K. Urban (Eds.), Model Reduction of Parametrized Systems (pp. 333--347). Springer International Publishing. https://doi.org/10.1007/978-3-319-58786-8_21
    9. Armiti-Juber, A., & Rohde, C. (2017). On Darcy-and Brinkman-Type Models for Two-Phase Flow in Asymptotically  Flat Domains. https://arxiv.org/abs/1712.07470
    10. Barth, A., & Fuchs, F. G. (2017). Uncertainty quantification for linear hyperbolic equations with    stochastic process or random field coefficients. APPLIED NUMERICAL MATHEMATICS, 121, 38–51. https://doi.org/10.1016/j.apnum.2017.06.009
    11. Barth, A., Harrach, B., Hyvoenen, N., & Mustonen, L. (2017). Detecting stochastic inclusions in electrical impedance tomography. INVERSE PROBLEMS, 33(11), Article 11. https://doi.org/10.1088/1361-6420/aa8f5c
    12. Barth, A., Harrach, B., Hyvönen, N., & Mustonen, L. (2017). Detecting stochastic inclusions in electrical impedance tomography. Inv. Prob., 33(11), Article 11. http://arxiv.org/abs/1706.03962
    13. Barth, A., & Stein, A. (2017). A study of elliptic partial differential equations with jump diffusion  coefficients.
    14. Baur, U., Benner, P., Haasdonk, B., Himpe, C., Maier, I., & Ohlberger, M. (2017). Comparison of methods for parametric model order reduction of instationary problems. In P. Benner, A. Cohen, M. Ohlberger, & K. Willcox (Eds.), Model Reduction and Approximation: Theory and Algorithms. SIAM Philadelphia. https://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-01.pdf
    15. Bhatt, A., & VanGorder, R. (2017). Chaos in a non-autonomous nonlinear system describing asymmetric  water wheels.
    16. Bhatt, A., & Moore, B. E. (2017). Structure-preserving ERK methods for non-autonomous DEs.
    17. Bhatt, A., & Moore, B. E. (2017). Structure-preserving numerical integration of DEs with conformal  invariants.
    18. Brehler, M., Schirwon, M., Göddeke, D., & Krummrich, P. M. (2017). A GPU-accelerated Fourth-Order Runge-Kutta in the Interaction  Picture Method for the Simulation of Nonlinear Signal Propagation  in Multimode Fibers. Journal of Lightwave Technology, 35(17), Article 17. https://doi.org/10.1109/JLT.2017.2715358
    19. Brünnette, T., Santin, G., & Haasdonk, B. (2017). Greedy kernel methods for accelerating implicit integrators for parametric ODEs. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1767
    20. Bürger, R., & Kröker, I. (2017). Hybrid Stochastic Galerkin Finite Volumes for the Diffusively Corrected  Lighthill-Whitham-Richards Traffic Model. In C. Cancès & P. Omnes (Eds.), Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic  and Parabolic Problems: FVCA 8, Lille, France, June 2017 (pp. 189--197). Springer International Publishing. https://doi.org/10.1007/978-3-319-57394-6_21
    21. Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2017). Partition of unity interpolation using stable kernel-based techniques. APPLIED NUMERICAL MATHEMATICS, 116(SI), Article SI. https://doi.org/10.1016/j.apnum.2016.07.005
    22. Chalons, C., Magiera, J., Rohde, C., & Wiebe, M. (2017). A Finite-Volume Tracking Scheme for Two-Phase Compressible Flow. Erscheint Bei Springer Proc. Math. Stat.
    23. Chalons, C., Rohde, C., & Wiebe, M. (2017). A FINITE VOLUME METHOD FOR UNDERCOMPRESSIVE SHOCK WAVES IN TWO SPACE    DIMENSIONS. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION  MATHEMATIQUE ET ANALYSE NUMERIQUE, 51(5), Article 5. https://doi.org/10.1051/m2an/2017027
    24. Chertock, A., Degond, P., & Neusser, J. (2017). An asymptotic-preserving method for a relaxation of the    Navier-Stokes-Korteweg equations. JOURNAL OF COMPUTATIONAL PHYSICS, 335, 387–403. https://doi.org/10.1016/j.jcp.2017.01.030
    25. De Marchi, S., Idda, A., & Santin, G. (2017). A Rescaled Method for RBF Approximation. In G. E. Fasshauer & L. L. Schumaker (Eds.), Approximation Theory XV: San Antonio 2016 (pp. 39--59). Springer International Publishing. https://doi.org/10.1007/978-3-319-59912-0_3
    26. De Marchi, S., Iske, A., & Santin, G. (2017). Image Reconstruction from Scattered Radon Data by Weighted Positive  Definite Kernel Functions.
    27. Diaz Ramos, J. C., Dominguez Vazquez, M., & Kollross, A. (2017). Polar actions on complex hyperbolic spaces. Mathematische Zeitschrift, 287(3), Article 3. https://doi.org/10.1007/s00209-017-1864-5
    28. Dibak, C., Schmidt, A., Dürr, F., Haasdonk, B., & Rothermel, K. (2017). Server-assisted interactive mobile simulations for pervasive applications. 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), 111--120. https://doi.org/10.1109/PERCOM.2017.7917857
    29. Dombry, C., Engelke, S., & Oesting, M. (2017). Bayesian inference for multivariate extreme value distributions. Electron. J. Stat., 11(2), Article 2. https://doi.org/10.1214/17-EJS1367
    30. Düll, W.-P. (2017). Justification of the nonlinear Schrödinger approximation for a quasilinear Klein-Gordon equation. Comm. Math. Phys., 355(3), Article 3. https://doi.org/10.1007/s00220-017-2966-y
    31. Escher, J., Gosselet, P., & Lienstromberg, C. (2017). A note on model reduction for microelectromechanical systems. Nonlinearity, 30(2), Article 2. https://doi.org/10.1088/1361-6544/aa4ff9
    32. Escher, J., & Lienstromberg, C. (2017). A survey on second-order free boundary value problems modelling MEMS with general permittivity profile. Discrete Contin. Dyn. Syst. Ser. S, 10(4), Article 4. https://doi.org/10.3934/dcdss.2017038
    33. Farooq, M., & Steinwart, I. (2017). An SVM-like Approach for Expectile Regression. Comput. Statist. Data Anal., 109, 159--181. https://doi.org/10.1016/j.csda.2016.11.010
    34. Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2017). A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension. J. Comput. Phys., 336, 347–374. https://doi.org/10.1016/j.jcp.2017.02.001
    35. Fehr, J., Grunert, D., Bhatt, A., & Hassdonk, B. (2017). A Sensitivity Study of Error Estimation in Reduced Elastic Multibody  Systems. Proceedings of MATHMOD 2018, Vienna, Austria.
    36. Feistauer, M., Bartos, O., Roskovec, F., & S�ndig, A.-M. (2017). Analysis of the FEM and DGM for an elliptic problem with a nonlinear  Newton boundary condition. Proceeding of the EQUADIFF 17, 127–136. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/
    37. Feistauer, M., Roskovec, F., & S�ndig, A.-M. (2017). Discontinuous Galerkin Method for an Elliptic Problem with Nonlinear  Boundary Conditions in a Polygon. IMA, 00, 1–31. https://doi.org/10.1093/imanum/drx070
    38. Fetzer, M., & Scherer, C. W. (2017). Full-block multipliers for repeated, slope restricted scalar nonlinearities. Int. J. Robust Nonlin., 27(17), Article 17. https://doi.org/10.1002/rnc.3751
    39. Fetzer, M., & Scherer, C. W. (2017). Absolute stability analysis of discrete time feedback interconnections. IFAC-PapersOnline, 50(1), Article 1. https://doi.org/10.1016/j.ifacol.2017.08.757
    40. Fetzer, M., & Scherer, C. W. (2017). Zames-Falb Multipliers for Invariance. IEEE Control Syst. Lett., 1(2), Article 2. https://doi.org/10.1109/LCSYS.2017.2718556
    41. Fetzer, M., Scherer, C. W., & Veenman, J. (2017). Invariance with dynamic multipliers. IEEE Trans. Autom. Control, 63(7), Article 7. https://doi.org/10.1109/TAC.2017.2762764
    42. Fetzer, M. (2017). From classical absolute stability tests towards a comprehensive robustness analysis [Dissertation, University of Stuttgart]. https://doi.org/10.18419/opus-9726
    43. Fukuizumi, R., Marzuola, J. L., Pelinovsky, D., & Schneider, G. (Eds.). (2017). Nonlinear partial differential equations on graphs. Abstracts from the workshop held June 18--24, 2017. Oberwolfach Rep., 14(2), Article 2.
    44. Funke, S., Mendel, T., Miller, A., Storandt, S., & Wiebe, M. (2017). Map Simplification with Topology Constraints: Exactly and in Practice. Proceedings of the Ninteenth Workshop on Algorithm Engineering and  Experiments, ALENEX 2017, Barcelona, Spain, Hotel Porta Fira, January 17-18, 2017., 185--196. https://doi.org/10.1137/1.9781611974768.15
    45. Gaspoz, F. D., Kreuzer, C., Siebert, K., & Ziegler, D. (2017). A convergent time-space adaptive $dG(s)$ finite element method for  parabolic problems motivated by equal error distribution. In Submitted. https://arxiv.org/abs/1610.06814
    46. Gaspoz, F. D., Morin, P., & Veeser, A. (2017). A posteriori error estimates with point sources in fractional sobolev  spaces. Numerical Methods for Partial Differential Equations, 33(4), Article 4. https://doi.org/10.1002/num.22065
    47. Gaspoz, F. D., & Morin, P. (2017). APPROXIMATION CLASSES FOR ADAPTIVE HIGHER ORDER FINITE ELEMENT    APPROXIMATION (vol 83, pg 2127, 2014). MATHEMATICS OF COMPUTATION, 86(305), Article 305. https://doi.org/10.1090/mcom/3243
    48. Geck, M. (2017). On the construction of semisimple Lie algebras and Chevalley groups. Proceedings of the American Mathematical Society, 145(8), Article 8. https://doi.org/10.1090/proc/13600
    49. Geck, M. (2017). On the modular composition factors of the Steinberg representation. Journal of Algebra, 475, 370--391. https://doi.org/10.1016/j.jalgebra.2015.11.005
    50. Geck, M. (2017). James’ Submodule Theorem and the Steinberg Module. Symmetry, Integrability and Geometry: Methods and Applications, 13. https://doi.org/10.3842/sigma.2017.091
    51. Geck, M. (2017). Minuscule weights and Chevalley                      groups. Finite Simple Groups: Thirty Years of the Atlas and Beyond (Celebrating the Atlases and Honoring John Conway, November 2-5, 2015 at Princeton University), 694, 159--176. https://doi.org/10.1090/conm/694/13955
    52. Geck, M., & Müller, J. (2017). Invariant bilinear forms on W-graph representations and linear algebra over integral domains. Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory (Eds. G. Böckle, W. Decker, G. Malle), 311–360. https://doi.org/10.1007/978-3-319-70566-8_13
    53. Giesselmann, J., Meyer, F., & Rohde, C. (2017). A posteriori error analysis for random scalar conservation laws using  the Stochastic Galerkin method.: Vol. (submitted). https://arxiv.org/abs/1709.04351
    54. Giesselmann, J., Lattanzio, C., & Tzavaras, A. E. (2017). Relative Energy for the Korteweg Theory and Related Hamiltonian Flows in Gas Dynamics. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 223(3), Article 3. https://doi.org/10.1007/s00205-016-1063-2
    55. Giesselmann, J., & Pryer, T. (2017). Goal-oriented error analysis of a DG scheme for a second gradient  elastodynamics model. In C. Cances & P. Omnes (Eds.), Finite Volumes for Complex Applications VIII-Methods and Theoretical  Aspects (Vol. 199). http://www.springer.com/de/book/9783319573960
    56. Giesselmann, J., & Pryer, T. (2017). A posteriori analysis for dynamic model adaptation in convection  dominated problems. Math. Models Methods Appl. Sci. (M3AS), 27(13), Article 13. https://doi.org/10.1142/S0218202517500476
    57. Giesselmann, J., & Tzavaras, A. E. (2017). Stability properties of the Euler-Korteweg system with nonmonotone  pressures. Appl. Anal., 96(9), Article 9. https://doi.org/10.1080/00036811.2016.1276175
    58. Griesemer, M. (2017). On the dynamics of polarons in the strong-coupling limit. Rev. Math. Phys., 29(10), Article 10. https://doi.org/10.1142/S0129055X17500301
    59. Griesemer, M., Schmid, J., & Schneider, G. (2017). On the dynamics of the mean-field polaron in the              high-frequency limit. Lett. Math. Phys., 107(10), Article 10. https://doi.org/10.1007/s11005-017-0969-4
    60. Gutt, R., Kohr, M., Mikhailov, S., & Wendland, W. L. (2017). On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman  systems in Besov spaces on creased Lipschitz domains. Math. Meth. Appl. Sci., 18, 7780–7829. https://doi.org/10.1002/mma.4562
    61. Gutt, R., Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2017). On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE    system in Besov spaces on creased Lipschitz domains. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 40(18), Article 18. https://doi.org/10.1002/mma.4562
    62. Haasdonk, B. (2017). Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction  for Stationary and Instationary Problems. In P. Benner, A. Cohen, M. Ohlberger, & K. Willcox (Eds.), Model Reduction and Approximation: Theory and Algorithms (pp. 65--136). SIAM, Philadelphia. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938
    63. Hahn, B. N. (2017). A motion artefact study and locally deforming objects in computerized tomography. Inverse Problems, 33(11), Article 11. https://doi.org/10.1088/1361-6420/aa8d7b
    64. Hahn, B. N. (2017). Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography. Sensing and Imaging, 18(10), Article 10. https://doi.org/10.1007/s11220-017-0159-6
    65. Hang, H., & Steinwart, I. (2017). A Bernstein-type Inequality for Some Mixing Processes and Dynamical Systems with an Application to Learning. Ann. Statist., 45, 708--743. https://doi.org/10.1214/16-AOS1465
    66. Harbrecht, H., Wendland, W. L., & Zorii, N. (2017). Riesz energy problems for strongly singular kernels. Math. Nachr. https://doi.org/10.1002/mana.201600024
    67. Heil, K., Moroianu, A., & Semmelmann, U. (2017). Killing tensors on tori. J. Geom. Phys., 117, 1--6. https://doi.org/10.1016/j.geomphys.2017.02.010
    68. Hintermueller, M., Rautenberg, C. N., Wu, T., & Langer, A. (2017). Optimal Selection of the Regularization Function in a Weighted Total    Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 59(3, SI), Article 3, SI. https://doi.org/10.1007/s10851-017-0736-2
    69. Hintermüller, M., Langer, A., Rautenberg, C. N., & Wu, T. (2017). Adaptive regularization for reconstruction from subsampled data. WIAS Preprint No. 2379. http://www.wias-berlin.de/preprint/2379/wias_preprints_2379.pdf
    70. Hintermüller, M., Rautenberg, C. N., Wu, T., & Langer, A. (2017). Optimal Selection of the Regularization Function in a Weighted Total  Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests. Journal of Mathematical Imaging and Vision, 1--19. https://link.springer.com/article/10.1007/s10851-017-0736-2
    71. Hänel, A., & Weidl, T. (2017). Spectral asymptotics for the Dirichlet Laplacian with a Neumann window via a Birman-Schwinger analysis of the Dirichlet-to-Neumann operator. Functional Analysis and Operator Theory for Quantum Physics, EMS Series of Congress Reports, J. Dittrich, et al. (Eds.), 315–352.
    72. Höllig, K. V., & Hörner, J. V. (Eds.). (2017). Aufgaben und Lösungen zur höheren Mathematik (pp. xi, 533 Seiten) [Aufgabensammlung]. Springer Spektrum. http://deposit.d-nb.de/cgi-bin/dokserv?id=86f385b1e03e40a0a23a214a0c3c5f72&prov=M&dok_var=1&dok_ext=htm
    73. Kane, B. (2017). Using DUNE-FEM for Adaptive Higher Order Discontinuous Galerkin  Methods for Two-phase Flow in Porous Media. Archive of Numerical Software, 5(1), Article 1.
    74. Kane, B., Klöfkorn, R., & Gersbacher, C. (2017). hp--Adaptive Discontinuous Galerkin Methods for Porous Media Flow. International Conference on Finite Volumes for Complex Applications, 447--456.
    75. Kohr, M., Medkova, D., & Wendland, W. L. (2017). On the Oseen-Brinkman flow around an (m-1)-dimensional obstacle. Monatshefte F�r Mathematik, 483, 269–302. https://doi.org/MOFM-D16-00078
    76. Kohr, M., Mikhailov, S., & Wendland, W. L. (2017). Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian mani. J of Mathematical Fluid Mechanics, 19, 203–238.
    77. Kollross, A. (2017). Hyperpolar actions on reducible symmetric spaces. Transformation Groups, 22(1), Article 1. https://doi.org/10.1007/s00031-016-9384-7
    78. Kovarik, H., Ruszkowski, B., & Weidl, T. (2017). Spectral estimates for the Heisenberg Laplacian on cylinders. Functional Analysis and Operator Theory for Quantum Physics, EMS Series of Congress Reports, J. Dittrich, et al. (Eds.), 433–446.
    79. Kutter, M., Rohde, C., & Sändig, A.-M. (2017). Well-Posedness of a Two Scale Model for Liquid Phase Epitaxy with  Elasticity. Contin. Mech. Thermodyn., 29(4), Article 4. https://doi.org/10.1007/s00161-015-0462-1
    80. Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., Wittwar, D., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2017). Comparison of data-driven uncertainty quantification methods for  a carbon dioxide storage benchmark scenario. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1759
    81. Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Wittwar, D., Santin, G., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2017). Datasets and executables of data-driven uncertainty quantification benchmark in carbon dioxide storage. https://doi.org/10.5281/zenodo.933827
    82. Köppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2017). Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods. University of Stuttgart.
    83. K�ppel, M., Kr�ker, I., & Rohde, C. (2017). Intrusive Uncertainty Quantification for Hyperbolic-Elliptic Systems  Governing Two-Phase Flow in Heterogeneous Porous Media. Comput. Geosci., 21, 807–832. https://doi.org/10.1007/s10596-017-9662-z
    84. Langer, A. (2017). Automated Parameter Selection in the L1-L2-TV Model for Removing  Gaussian Plus Impulse Noise. Inverse Problems, 33, 41. http://people.ricam.oeaw.ac.at/a.langer/publications/L1L2TVm.pdf
    85. Langer, A. (2017). Automated Parameter Selection for Total Variation Minimization in  Image Restoration. Journal of Mathematical Imaging and Vision, 57, 239--268. https://doi.org/10.1007/s10851-016-0676-2
    86. Lienstromberg, C. (2017). Well-posedness of a quasilinear evolution problem modelling MEMS with general permittivity. J. Evol. Equ., 17(4), Article 4. https://doi.org/10.1007/s00028-016-0375-x
    87. Magiera, J., & Rohde, C. (2017). A Particle-based Multiscale Solver for Compressible Liquid-Vapor  Flow. Erscheint Bei Springer Proc. Math. Stat. https://arxiv.org/abs/1804.01411
    88. Martini, I., Rozza, G., & Haasdonk, B. (2017). Certified Reduced Basis Approximation for the Coupling of Viscous  and Inviscid Parametrized Flow Models. Journal of Scientific Computing. https://doi.org/10.1007/s10915-017-0430-y
    89. Maz’ya, V., Natroshvili, D., Shargorodsky, E., & Wendland, W. L. (Eds.). (2017). Recent Trends in Operator Theory and Partial Differential Equations.  The Roland Duduchava Anniverary Volume (No. 258; Issue 258). Birkhäuser/Springer International.
    90. Minbashian, H. (2017). Wavelet-based Multiscale Methods for Numerical Solution of Hyperbolic  Conservation Laws. Amirkabir University of Technology (Tehran 11/2017 Polytechnic),  Tehran, Iran.
    91. Minbashian, H., Adibi, H., & Dehghan, M. (2017). An Adaptive Space-Time Shock Capturing Method with High Order Wavelet  Bases for the System of Shallow Water Equations. International Journal of Numerical Methods for Heat & Fluid Flow.
    92. Minbashian, H., Adibi, H., & Dehghan, M. (2017). On Resolution of Boundary Layers of Exponential Profile with Small  Thickness Using an Upwind Method in IGA.
    93. Minbashian, H., Adibi, H., & Dehghan, M. (2017). An adaptive wavelet space-time SUPG method for hyperbolic conservation  laws. Numerical Methods for Partial Differential Equations, 33(6), Article 6. https://doi.org/10.1002/num.22180
    94. Oesting, M., Schlather, M., & Friederichs, P. (2017). Statistical post-processing of forecasts for extremes using bivariate Brown-Resnick processes with an application to wind gusts. Extremes, 20(2), Article 2. https://doi.org/10.1007/s10687-016-0277-x
    95. Pelinovsky, D., & Schneider, G. (2017). Bifurcations of standing localized waves on periodic graphs. Ann. Henri Poincaré, 18(4), Article 4.
    96. Rohde, C. (2017). Fully Resolved Compressible Two-Phase Flow: Modelling, Analytical  and Numerical Issues.
    97. Rösinger, C. A., & Scherer, C. W. (2017). Structured Controller Design With Applications to Networked Systems. Proc. 56th IEEE Conf. Decision and Control, 4771–4776. https://doi.org/10.1109/CDC.2017.8264365
    98. Santin, G., & Haasdonk, B. (2017). Convergence rate of the data-independent P-greedy algorithm in  kernel-based approximation. Dolomites Research Notes on Approximation, 10, 68--78. http://www.emis.de/journals/DRNA/9-2.html
    99. Santin, G., & Haasdonk, B. (2017). Non-symmetric kernel greedy interpolation.
    100. Santin, G., & Haasdonk, B. (2017). Greedy Kernel Approximation for Sparse Surrogate Modelling. University of Stuttgart.
    101. Schanz, M., Ketteler, M., Heck, M., Dippon, J., Alscher, MD., & Kimmel, M. (2017). Impact of an in-Hospital Patient Education Program on Choice of Renal Replacement Modality in Unplanned Dialysis Initiation. Kidney & Blood Pressure Research, 42(5), Article 5. https://doi.org/10.1159/000484531
    102. Schanz, M., Schaaf, L., Dippon, J., Biegger, D., Fritz, P., Alscher, MD., & Kimmel, M. (2017). Renal effects of metallothionein induction by zinc in vitro and in vivo. BMC Nephrol, 2017 Mar 16;18(1), 91. https://doi.org/10.1186/s12882-017-0503-z
    103. Schmid, J., & Griesemer, M. (2017). Well-posedness of non-autonomous linear evolution equations in              uniformly convex spaces. Math. Nachr., 290(2–3), Article 2–3. https://doi.org/10.1002/mana.201500052
    104. Schmidt, A., & Haasdonk, B. (2017). Data-driven surrogates of value functions and applications to feedback  control for dynamical systems. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1742
    105. Schmidt, A., & Haasdonk, B. (2017). Reduced basis approximation of large scale parametric algebraic Riccati  equations. ESAIM: Control, Optimisation and Calculus of Variations. https://doi.org/10.1051/cocv/2017011
    106. Schneider, G., & Uecker, H. (2017). Nonlinear PDEs. A dynamical systems approach. In Grad. Stud. Math. (Vol. 182, p. xiii + 575). Providence, RI: American Mathematical Society (AMS).
    107. Seus, D., Radu, F. A., & Rohde, C. (2017). A linear domain decomposition method for two-phase flow in porous  media. https://doi.org/arXiv:1712.04869
    108. Steinwart, I. (2017). Representation of Quasi-Monotone Functionals by Families of Separating Hyperplanes. Math. Nachr., 290, 1859--1883. https://doi.org/10.1002/mana.201500350
    109. Steinwart, I. (2017). A Short Note on the Comparison of Interpolation Widths, Entropy Numbers, and Kolmogorov Widths. J. Approx. Theory, 215, 13--27. https://doi.org/10.1016/j.jat.2016.11.006
    110. Steinwart, I., Sriperumbudur, B. K., & Thomann, P. (2017). Adaptive Clustering Using Kernel Density Estimators. Fakultät für Mathematik und Physik, Universität Stuttgart.
    111. Steinwart, I., & Thomann, P. (2017). liquidSVM: A Fast and Versatile SVM Package. Fakultät für Mathematik und Physik, Universität Stuttgart.
    112. Tempel, P., Schmidt, A., Haasdonk, B., & Pott, A. (2017). Application of the Rigid Finite Element Method to the Simulation of Cable-Driven Parallel Robots. University of Stuttgart.
    113. Thomann, P., Steinwart, I., Blaschzyk, I., & Meister, M. (2017). Spatial Decompositions for Large Scale SVMs. In A. Singh & J. Zhu (Eds.), Proceedings of Machine Learning Research Volume 54: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics 2017 (pp. 1329--1337).
    114. Wirth, J. (2017). On t-dependent hyperbolic systems. Part 2. J. Math. Anal. Appl., 448(1), Article 1. https://doi.org/10.1016/j.jmaa.2016.11.026
    115. Wirth, J. (2017). Regular singular problems for hyperbolic systems and their              asymptotic integration. In New trends in analysis and interdisciplinary applications (pp. 553--561). Birkhäuser/Springer, Cham. https://doi.org/10.1007/978-3-319-48812-7_70
    116. Wittwar, D., & Haasdonk, B. (2017). On uncoupled separable matrix-valued kernels. University of Stuttgart.
    117. Wittwar, D., Santin, G., & Haasdonk, B. (2017). Interpolation with uncoupled separable matrix-valued kernels. [ArXiv preprint 1807.09111, Accepted for publications in Dolomites Res. Notes Approx.].
    118. Wittwar, D., Schmidt, A., & Haasdonk, B. (2017). Reduced Basis Approximation for the Discrete-time Parametric Algebraic  Riccati Equation. University of Stuttgart.
  9. 2016

    1. Alk�mper, M., Dedner, A., Kl�fkorn, R., & Nolte, M. (2016). The DUNE-ALUGrid Module. Archive of Numerical Software, 4(1), Article 1. https://doi.org/10.11588/ans.2016.1.23252
    2. Alla, A., Schmidt, A., & Haasdonk, B. (2016). Model order reduction approaches for infinite horizon optimal control problems via the HJB equation. University of Stuttgart. https://arxiv.org/abs/1607.02337
    3. Allerhand, L., Gershon., E., & Shaked, U. (2016). Robust state-feedback control of stochastic state-multiplicative discrete-time linear switched systems with dwell time. Int. J. Robust Nonlin., 26(2), Article 2. https://doi.org/10.1002/rnc.3301
    4. Altenbernd, M., & Göddeke, D. (2016). Soft fault detection and correction for multigrid. The International Journal of High Performance Computing Applications. https://doi.org/10.1177/1094342016684006
    5. Ammann, B., Weiss, H., & Witt, F. (2016). A spinorial energy functional: critical points and gradient flow. Math. Ann., 365(3–4), Article 3–4. https://doi.org/10.1007/s00208-015-1315-8
    6. Ammann, B., Weiss, H., & Witt, F. (2016). The spinorial energy functional on surfaces. Math. Z., 282(1–2), Article 1–2. https://doi.org/10.1007/s00209-015-1537-1
    7. Amsallem, D., & Haasdonk, B. (2016). PEBL-ROM: Projection-Error Based Local Reduced-Order Models. AMSES, Advanced Modeling and Simulation in Engineering Sciences, 3(6), Article 6. https://doi.org/10.1186/s40323-016-0059-7
    8. Antoulas, A. C., Haasdonk, B., & Peherstorfer, B. (2016). MORML 2016 Book of Abstracts. University of Stuttgart.
    9. Apprich, C., Höllig, K., Hörner, J., & Reif, U. (2016). Collocation with WEB--Splines. Advances in Computational Mathematics, 42(4), Article 4. https://doi.org/10.1007/s10444-015-9444-x
    10. Barseghyan, D., Exner, P., Kovarik, H., & Weidl, T. (2016). Semiclassical bounds in magnetic bottles. Reviews in Mathematical Physics, 28(1), Article 1. https://doi.org/10.1142/S0129055X16500021
    11. Barth, A., Burger, R., Kr�ker, I., & Rohde, C. (2016). Computational uncertainty quantification for a clarifier-thickener model    with several random perturbations: A hybrid stochastic Galerkin approach. COMPUTERS & CHEMICAL ENGINEERING, 89, 11–26. https://doi.org/10.1016/j.compchemeng.2016.02.016
    12. Barth, A., B�rger, R., Kröker, I., & Rohde, C. (2016). Computational uncertainty quantification for a clarifier-thickener  model with several random perturbations: A hybrid stochastic Galerkin  approach. Computers & Chemical Engineering, 89, 11-- 26. http://dx.doi.org/10.1016/j.compchemeng.2016.02.016
    13. Barth, A., & Fuchs, F. G. (2016). Uncertainty quantification for hyperbolic conservation laws with  flux coefficients given by spatiotemporal random fields. SIAM J. Sci. Comput., 38(4), Article 4. https://doi.org/10.1137/15M1027723
    14. Barth, A., & Kröker, I. (2016). Finite volume methods for hyperbolic partial differential equations  with spatial noise. In Springer Proceedings in Mathematics and Statistics: Vol. submitted. Springer International Publishing.
    15. Barth, A., Moreno-Bromberg, S., & Reichmann, O. (2016). A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate  Setting. Comp. Economics, 47(3), Article 3. https://doi.org/10.1007/s10614-015-9502-y
    16. Barth, A., Schwab, C., & Sukys, J. (2016). Multilevel Monte Carlo simulation of statistical solutions to  the Navier-Stokes equations. In Monte Carlo and quasi-Monte Carlo methods (Vol. 163, pp. 209--227). Springer, Cham. https://doi.org/10.1007/978-3-319-33507-0_8
    17. Barth, A., & Stein, A. (2016). Approximation and simulation of infinite-dimensional Lévy processes. http://arxiv.org/abs/1612.05541
    18. Bastian, P., Engwer, C., Fahlke, J., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Milk, R., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., & Turek, S. (2016). Advances Concerning Multiscale Methods and Uncertainty Quantification  in EXA-DUNE. In H.-J. Bungartz, P. Neumann, & W. E. Nagel (Eds.), Software for Exascale Computing -- SPPEXA 2013--2015 (pp. 25--43). Springer. https://doi.org/10.1007/978-3-319-40528-5_2
    19. Bastian, P., Engwer, C., Fahlke, J., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Milk, R., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., & Turek, S. (2016). Hardware-Based Efficiency Advances in the EXA-DUNE Project. In H.-J. Bungartz, P. Neumann, & W. E. Nagel (Eds.), Software for Exascale Computing -- SPPEXA 2013--2015 (pp. 3--23). Springer. https://doi.org/10.1007/978-3-319-40528-5_1
    20. Baur, U., Benner, P., Haasdonk, B., Himpe, C., Maier, I., & Ohlberger, M. (2016). Comparison of methods for parametric model order reduction of instationary  problems. In P. Benner, A. Cohen, M. Ohlberger, & K. Willcox (Eds.), Model Reduction and Approximation for Complex Systems. Birkhäuser Publishing. https://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-01.pdf
    21. Betancourt, F., & Rohde, C. (2016). Finite-Volume Schemes for Friedrichs Systems with Involutions. App. Math. Comput., 272, Part 2, 420–439. https://doi.org/10.1016/j.amc.2015.03.050
    22. Bhatt, A. (2016). Structure-preserving Finite Difference Methods for Linearly Damped  Differential Equations. University of Central Florida.
    23. Bhatt, A., & Moore, B. E. (2016). Structure-preserving Exponential Runge-Kutta Methods. SIAM J. Sci Comp.
    24. Bhatt, A., & Moore, B. E. (2016). Geometric Integration of a Damped Driven Nonlinear Schrodinger Equation.
    25. Carlberg, K., Brencher, L., Haasdonk, B., & Barth, A. (2016). Data-driven time parallelism via forecasting. https://arxiv.org/abs/1610.09049v1
    26. Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2016). Partition of unity interpolation using stable kernel-based techniques. Applied Numerical Mathematics. https://doi.org/10.1016/j.apnum.2016.07.005
    27. Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2016). Approximating basins of attraction for dynamical systems via stable  radial bases. AIP Conf. Proc. https://doi.org/10.1063/1.4952177
    28. Chertock, A., Degond, P., & Neusser, J. (2016). An Asymptotic-Preserving Method for a Relaxation of the Navier-Stokes-Korteweg  Equations. Journal of Computational Physics, 335, 387–403. http://arxiv.org/abs/1512.04228
    29. Colombo, R. M., Guerra, G., & Schleper, V. (2016). The compressible to incompressible limit of 1D Euler equations: the  non-smooth case. Archive for Rational Mechanics and Analysis, 219(2), Article 2. https://doi.org/10.1007/s00205-015-0904-8
    30. Colombo, R. M., LeFloch, P. G., & Rohde, C. (2016). Hyperbolic techniques in Modelling, Analysis and Numerics. Oberwolfach Reports, 13, 1683–1751. https://doi.org/10.4171/OWR/2016/30
    31. Colombo, R. M., Guerra, G., & Schleper, V. (2016). The Compressible to Incompressible Limit of One Dimensional Euler    Equations: The Non Smooth Case. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 219(2), Article 2. https://doi.org/10.1007/s00205-015-0904-8
    32. Dedner, A., & Giesselmann, J. (2016). A posteriori analysis of fully discrete method of lines DG schemes  for systems of conservation laws. SIAM J. Numer. Anal., 54(6), Article 6. http://epubs.siam.org/toc/sjnaam/54/6
    33. Dedner, A., & Giesselmann, J. (2016). A POSTERIORI ANALYSIS OF FULLY DISCRETE METHOD OF LINES DISCONTINUOUS    GALERKIN SCHEMES FOR SYSTEMS OF CONSERVATION LAWS. SIAM JOURNAL ON NUMERICAL ANALYSIS, 54(6), Article 6. https://doi.org/10.1137/15M1046265
    34. Degeratu, A., & and Thomas Walpuski. (2016). Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three. Symmetry, Integrability and Geometry: Methods and Applications. https://doi.org/10.3842/sigma.2016.017
    35. Diehl, D., Kremser, J., Kröner, D., & Rohde, C. (2016). Numerical Solution of Navier-Stokes-Korteweg Systems by Local Discontinuous  Galerkin Methods in Multiple Space Dimensions. Appl. Math. Comput., 272, Part 2, 309–335. https://doi.org/10.1016/j.amc.2015.09.080
    36. Diehl, D., Kremser, J., Kroener, D., & Rohde, C. (2016). Numerical solution of Navier-Stokes-Korteweg systems by Local    Discontinuous Galerkin methods in multiple space dimensions. APPLIED MATHEMATICS AND COMPUTATION, 272(2), Article 2. https://doi.org/10.1016/j.amc.2015.09.080
    37. Dihlmann, M., & Haasdonk, B. (2016). A reduced basis Kalman filter for parametrized partial differential equations. ESAIM: COCV, 22(3), Article 3. https://doi.org/10.1051/cocv/2015019
    38. Dragomirescu, F. I., Eisenschmidt, K., Rohde, C., & Weigand, B. (2016). Perturbation solutions for the finite radially symmetric Stefan problem. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 104, 386–395. https://doi.org/10.1016/j.ijthermalsci.2016.01.019
    39. Dragomirescu, I., Eisenschmidt, K., Rohde, C., & Weigand, B. (2016). Perturbation solutions for the finite radially symmetric Stefan problem. Inter. J. Thermal Sci., 104, 386–395. https://doi.org/10.1016/j.ijthermalsci.2016.01.019
    40. Dumbser, M., Gassner, G., Rohde, C., & Roller, S. (2016). Preface to the special issue ``Recent Advances in Numerical  Methods for Hyperbolic Partial Differential Equations’’. Appl. Math. Comput., 272(part 2), Article part 2. https://doi.org/10.1016/j.amc.2015.11.023
    41. Düll, W.-P., Hermann, A., Schneider, G., & Zimmermann, D. (2016). Justification of the 2D NLS equation for a fourth order nonlinear wave equation - quadratic resonances do not matter much in case of analytic initial conditions. J. Math. Anal. Appl., 436(2), Article 2.
    42. Düll, W.-P., Kashani, K. S., & Schneider, G. (2016). The validity of Whitham’s approximation for a Klein-Gordon-Boussinesq model. SIAM J. Math. Anal., 48(6), Article 6. https://doi.org/10.1137/16M1071687
    43. Düll, W.-P., Kashani, K. S., Schneider, G., & Zimmermann, D. (2016). Attractivity of the Ginzburg-Landau mode distribution for a pattern forming system with marginally stable long modes. J. Differ. Equations, 261(1), Article 1.
    44. Düll, W.-P., Schneider, G., & Wayne, C. E. (2016). Justification of the nonlinear Schrödinger equation for the evolution of gravity driven 2D surface water waves in a canal of finite depth. Arch. Ration. Mech. Anal., 220(2), Article 2. https://doi.org/10.1007/s00205-015-0937-z
    45. Escher, J., & Lienstromberg, C. (2016). Finite-time singularities of solutions to microelectromechanical systems with general permittivity. Ann. Mat. Pura Appl. (4), 195(6), Article 6. https://doi.org/10.1007/s10231-016-0549-8
    46. Escher, J., & Lienstromberg, C. (2016). A qualitative analysis of solutions to microelectromechanical systems with curvature and nonlinear permittivity profile. Comm. Partial Differential Equations, 41(1), Article 1. https://doi.org/10.1080/03605302.2015.1105259
    47. Fetzer, M., & Scherer, C. W. (2016). Stability and Performance Analysis on Sobolev Spaces. 55th IEEE Conf. Decision and Control, 7264–7269. https://doi.org/10.1109/CDC.2016.7799390
    48. Fetzer, M., & Scherer, C. W. (2016). A General Integral Quadratic Constraints Theorem with Applications to a Class of Sampled-Data Systems. SIAM J. Contr. Optim., 54(3), Article 3. https://doi.org/10.1137/140985482
    49. Fritzen, F., Haasdonk, B., Ryckelynck, D., & Schöps, S. (2016). An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem [Arxiv Report]. University of Stuttgart. https://arxiv.org/abs/1610.05029
    50. Fritzen, F., Haasdonk, B., Ryckelynck, D., & Schöps, S. (2016). An algorithmic comparison of the Hyper-Reduction and the Discrete  Empirical Interpolation Method for a nonlinear thermal problem [Arxiv Report]. University of Stuttgart. https://arxiv.org/abs/1610.05029
    51. Garmatter, D., Haasdonk, B., & Harrach, B. (2016). A reduced Landweber Method for Nonlinear Inverse Problems. Inverse Problems, 32(3), Article 3. http://dx.doi.org/10.1088/0266-5611/32/3/035001
    52. Garmatter, D., Haasdonk, B., & Harrach, B. (2016). A reduced basis Landweber method for nonlinear inverse problems. INVERSE PROBLEMS, 32(3), Article 3. https://doi.org/10.1088/0266-5611/32/3/035001
    53. Gaspoz, F. D., Heine, C.-J., & Siebert, K. G. (2016). Optimal Grading of the Newest Vertex Bisection and H1-Stability of  the L2-Projection. IMA Journal of Numerical Analysis, 36(3), Article 3. https://doi.org/10.1093/imanum/drv044
    54. Geveler, M., Reuter, B., Aizinger, V., Göddeke, D., & Turek, S. (2016). Energy efficiency of the simulation of three-dimensional coastal  ocean circulation on modern commodity and mobile processors -- A  case study based on the Haswell and Cortex-A15 microarchitectures. Computer Science -- Research and Development, 31(4), Article 4. https://doi.org/10.1007/s00450-016-0324-5
    55. Giesselmann, J. (2016). Relative entropy based error estimates for discontinuous Galerkin  schemes. Bull. Braz. Math. Soc. (N.S.), 47(1), Article 1. https://doi.org/10.1007/s00574-016-0144-z
    56. Giesselmann, J., & LeFloch, P. G. (2016). Formulation and convergence of the finite volume method for conservation  laws on spacetimes with boundary. ArXiv. http://arxiv.org/abs/1607.03944
    57. Giesselmann, J., & Pryer, T. (2016). Reduced relative entropy techniques for a priori analysis of multiphase  problems in elastodynamics. BIT Numerical Mathematics, 56, 99-- 127. https://doi.org/10.1007/s10543-015-0560-2
    58. Giesselmann, J., & Pryer, T. (2016). Reduced relative entropy techniques for a posteriori analysis of  multiphase problems in elastodynamics. IMA J. Numer. Anal., 36(4), Article 4. http://imajna.oxfordjournals.org/content/36/4/1685
    59. Gilg, S., Pelinovsky, D., & Schneider, G. (2016). Validity of the NLS approximation for periodic quantum graphs. NoDEA, Nonlinear Differ. Equ. Appl., 23(6), Article 6.
    60. Gisselmann, J., & Pryer, T. (2016). Reduced relative entropy techniques for a posteriori analysis of    multiphase problems in elastodynamics. IMA JOURNAL OF NUMERICAL ANALYSIS, 36(4), Article 4. https://doi.org/10.1093/imanum/drv052
    61. Gorodski, C., & Kollross, A. (2016). Some remarks on polar actions. Annals of Global Analysis and Geometry, 49(1), Article 1. https://doi.org/10.1007/s10455-015-9479-8
    62. Griesemer, M., & Wünsch, A. (2016). Self-adjointness and domain of the Fröhlich Hamiltonian. J. Math. Phys., 57(2), Article 2. https://doi.org/10.1063/1.4941561
    63. Guerra, G., & Schleper, V. (2016). A coupling between a 1D compressible-incompressible limit and the  1D p-system in the non smooth case. Bulletin of the Brazilian Mathematical Society, New Series, 47(1), Article 1. https://doi.org/10.1007/s00574-016-0146-x
    64. Gutt, R., Kohr, M., Pintea, C., & Wendland, W. L. (2016). On the transmission problems for the Oseen and Brinkman systems on  Lipschitz domains in compact Riemannian manifolds. Math. Nachr, 289, 471–484.
    65. Hahn, B. N. (2016). Null space and resolution in dynamic computerized tomography. Inverse Problems, 32(2), Article 2. https://doi.org/10.1088/0266-5611/32/2/025006
    66. Hahn, B. N., & Quinto, E. T. (2016). Detectable singularities from dynamic Radon data. SIAM J. Imaging Sciences, 9(3), Article 3. https://doi.org/10.1137/16M1057917
    67. Hang, H., Feng, Y., Steinwart, I., & Suykens, J. A. K. (2016). Learning theory estimates with observations from general stationary stochastic processes. Neural Computation, 28, 2853--2889. https://doi.org/10.1162/NECO_a_00870
    68. Harbrecht, H., Wendland, W. L., & Zorii, N. (2016). Rapid solution of minimal Riesz energy problems. Numer. Methods Partial Diff. Equ., 32, 1535–1552.
    69. Heil, K., Moroianu, A., & Semmelmann, U. (2016). Killing and conformal Killing tensors. J. Geom. Phys., 106, 383--400. https://doi.org/10.1016/j.geomphys.2016.04.014
    70. Holicki, T., & Scherer, C. W. (2016). Controller synthesis for distributed systems over undirected graphs. 55th IEEE Conf. Decision and Control, 5238–5244. https://doi.org/10.1109/CDC.2016.7799071
    71. Hänel, A., & Weidl, T. (2016). Eigenvalue asymptotics for an elastic strip and an elastic plate with a crack. Quarterly Journal of Mechanics and Applied Mathematics, 69(4), Article 4. https://doi.org/10.1093/qjmam/hbw009
    72. Kabil, B., & Rodrigues, M. (2016). Spectral validation of the Whitham equations for periodic waves of  lattice dynamical systems. Journal of Differential Equations, 260(3), Article 3. https://doi.org/10.1016/j.jde.2015.10.025
    73. Kabil, B., & Rohde, C. (2016). Persistence of undercompressive phase boundaries for isothermal Euler  equations including configurational forces and surface tension. Math. Meth. Appl. Sci., 39(18), Article 18. https://doi.org/10.1002/mma.3926
    74. Kohr, M., de Cristoforis, L., Mikhailov, S., & Wendland, W. L. (2016). Integral potential method for transmission problem with Lipschitz  interface in R� for the Stokes and Darcy-Forchheimer-Brinkman PED  systems. ZAMP, 67:116, 1–30.
    75. Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2016). On the Robin transmission boundary value problem for the nonlinear  Darcy-Forchheimer-Brinkman and Navier-Stokes system. J. Math. Fluid Mechanics, 18, 293–329.
    76. Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2016). Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian manifolds. Journal of Mathematical Fluid Dynamics, DOI 10.1007/s 00021-16-0273-6.
    77. Kohr, M., Pintea, C., & Wendland, W. L. (2016). Poisson transmission problems for L^infty perturbations of the Stokes  system on Lipschitz domains on compact Riemannian manifolds. J. Dyn. Diff. Equations, DOI 110.1007/s10884-014-9359-0.
    78. Kohr, M., de Cristoforis, M. L., Mikhailov, S. E., & Wendland, W. L. (2016). Integral potential method for a transmission problem with Lipschitz    interface in R-3 for the Stokes and Darcy-Forchheimer-Brinkman PDE    systems. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 67(5), Article 5. https://doi.org/10.1007/s00033-016-0696-1
    79. Kohr, M., de Cristoforis, M. L., & Wendland, W. L. (2016). On the Robin-Transmission Boundary Value Problems for the Nonlinear    Darcy-Forchheimer-Brinkman and Navier-Stokes Systems. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 18(2), Article 2. https://doi.org/10.1007/s00021-015-0236-3
    80. Köppel, M., & Rohde, C. (2016). Uncertainty Quantification for Two-Phase Flow in Heterogeneous Porous  Media. PAMM Proc. Appl. Math. Mech., 16(1), Article 1. https://doi.org/10.1002/pamm.201610363
    81. Lienstromberg, C. (2016). On qualitative properties of solutions to microelectromechanical systems with general permittivity. Monatsh. Math., 179(4), Article 4. https://doi.org/10.1007/s00605-015-0744-5
    82. List, F., & Radu, F. A. (2016). A study on iterative methods for solving Richards’ equation. COMPUTATIONAL GEOSCIENCES, 20(2), Article 2. https://doi.org/10.1007/s10596-016-9566-3
    83. Magiera, J., Rohde, C., & Rybak, I. (2016). A hyperbolic-elliptic model problem for coupled surface-subsurface  flow. Transp. Porous Media, 114(2), Article 2. https://doi.org/10.1007/S11242-015-0548-Z
    84. Mazzeo, R., Swoboda, J., Weiss, H., & Witt, F. (2016). Ends of the moduli space of Higgs bundles. Duke Math. J., 165(12), Article 12. https://doi.org/10.1215/00127094-3476914
    85. Meister, M., & Steinwart, I. (2016). Optimal Learning Rates for Localized SVMs. J. Mach. Learn. Res., 17, 1–44.
    86. Nguyen Tien, H., Scherer, C. W., Scherpen, J. M. A., & Müller, V. (2016). Linear Parameter Varying Control of Doubly Fed Induction Machines. IEEE Trans. Ind. Electron., 63(1), Article 1. https://doi.org/10.1109/TIE.2015.2465895
    87. Ostrowski, L., Ziegler, B., & Rauhut, G. (2016). Tensor decomposition in potential energy surface representations. The Journal of Chemical Physics, 145(10), Article 10. https://doi.org/10.1063/1.4962368
    88. Redeker, M., & Haasdonk, B. (2016). A POD-EIM reduced two-scale model for precipitation in porous media. MCMDS, Mathematical and Computer Modelling of Dynamical Systems. https://doi.org/10.1080/13873954.2016.1198384
    89. Redeker, M., Pop, I. S., & Rohde, C. (2016). Upscaling of a Tri-Phase Phase-Field Model for Precipitation in Porous  Media. IMA J. Appl. Math., 81(5), 898–939. https://doi.org/10.1093/imamat/hxw023
    90. Rossi, E., & Schleper, V. (2016). Convergence of a numerical scheme for a mixed hyperbolic-parabolic  system in two space dimensions. ESAIM Math. Model. Numer. An., 50(2), Article 2. https://doi.org/10.1051/m2an/2015050
    91. Rybak, I., & Magiera, J. (2016). Decoupled schemes for free flow and porous medium systems. In T. D. et al. (Ed.), Domain Decomposition Methods in Science and Engineering XXII (Vol. 104, pp. 613--621). Springer. https://doi.org/10.1007/978-3-319-18827-0\_54
    92. Santin, G. (2016). Approximation in kernel-based spaces, optimal subspaces and approximation  of eigenfunction [Doctoral School in Mathematical Sciences, University of Padova]. http://paduaresearch.cab.unipd.it/9186/
    93. Santin, G., & Schaback, R. (2016). Approximation of eigenfunctions in kernel-based spaces. ADVANCES IN COMPUTATIONAL MATHEMATICS, 42(4), Article 4. https://doi.org/10.1007/s10444-015-9449-5
    94. Scherer, C. W. (2016). Lossless $H_ınfty$-synthesis for 2D systems (special issue JCW). Syst. Control Lett., 95, 25–35. https://doi.org/10.1016/j.sysconle.2016.02.011
    95. Schleper, V. (2016). A HLL-type Riemann solver for two-phase flow with surface forces and    phase transitions. APPLIED NUMERICAL MATHEMATICS, 108, 256–270. https://doi.org/10.1016/j.apnum.2015.12.010
    96. Schmidt, A., & Haasdonk, B. (2016). Reduced basis method for H2 optimal feedback control problems. IFAC-PapersOnLine, 49(8), Article 8. http://dx.doi.org/10.1016/j.ifacol.2016.07.462
    97. Schneider, G. (2016). Validity and non-validity of the nonlinear Schrödinger equation as a model for water waves. In Lectures on the theory of water waves. Papers from the talks given at the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, July -- August, 2014 (pp. 121--139). Cambridge: Cambridge University Press.
    98. Sharanya, V., Raja Sekhar, G. P., & Rohde, C. (2016). Bed of polydisperse viscous spherical drops under thermocapillary  effects. Z. Angew. Math. Phys., 67(4), Article 4. https://doi.org/10.1007/s00033-016-0699-y
    99. Stein, A. (2016). Exakte Simulation von Optionspreisen und Sensitivitäten unter  stochastischer Volatilität [Master Thesis].
    100. Steinwart, I., Thomann, P., & Schmid, N. (2016). Learning with Hierarchical Gaussian Kernels. Fakultät für Mathematik und Physik, Universität Stuttgart.
    101. Trottemant, E. J., Mazo, M., & Scherer, C. W. (2016). Synthesis of Robust Piecewise Affine Output-Feedback Strategies. J. Guid. Control Dynam., 39(7), Article 7. https://doi.org/10.2514/1.G001343
    102. Trottemant, E. J., Scherer, C. W., & Mazo, M. (2016). Optimality of robust disturbance-feedback strategies. Int. J. Robust Nonlin., 26(7), Article 7. https://doi.org/10.1002/rnc.3360
    103. Veenman, J., Lahr, M., & Scherer, C. W. (2016). Robust controller synthesis with unstable weights. 55th IEEE Conf. Decision and Control, 2390–2395. https://doi.org/10.1109/CDC.2016.7798620
    104. Veenman, J., Scherer, C. W., & Köroglu, H. (2016). Robust stability and performance analysis with integral quadratic constraints. Eur. J. Control, 31, 1–32. https://doi.org/10.1016/j.ejcon.2016.04.004
  10. 2015

    1. Allerhand, L. I. (2015). Stability of adaptive control in the presence of input disturbances and $H_ınfty$ performance. IFAC-PapersOnline, 48(14), Article 14. https://doi.org/10.1016/j.ifacol.2015.09.437
    2. Allerhand, L. I., Gershon, E., & Shaked, U. (2015). State-feedback Control of Stochastic Discrete-time Linear Switched Systems with Dwell Time. Eur. Control Conf., 452–457. https://doi.org/10.1109/ECC.2015.7330585
    3. Allerhand, L. I., & Shaked, U. (2015). Soft Controller Switching with Guaranteed $H_ınfty$ Performance. IFAC-PapersOnline, 48(11), Article 11. https://doi.org/10.1016/j.ifacol.2015.09.296
    4. Amsallem, D., Farhat, C., & Haasdonk, B. (2015). Editorial: Special Issue on Modelling Reduction. IJNME, International Journal of Numerical Methods in Engineering, 102(5), Article 5. https://doi.org/10.1002/nme.4889
    5. Amsallem, D., Farhat, C., & Haasdonk, B. (2015). Editorial: Special Issue on Model Reduction. IJNME, International Journal of Numerical Methods in Engineering, 102(5), Article 5. https://doi.org/10.1002/nme.4889
    6. Amsallem, D., & Haasdonk, B. (2015). PEBL-ROM: Projection-Error Based Local Reduced-Order Models [SimTech Preprint]. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1436
    7. Amsallem, D., Farhat, C., & Haasdonk, B. (2015). Special Issue on Model Reduction. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 102(5, SI), Article 5, SI. https://doi.org/10.1002/nme.4889
    8. Bhatt, A., Floyd, D., & Moore, B. E. (2015). Second Order Conformal Symplectic Schemes for Damped Hamiltonian  Systems. Journal of Scientific Computing. https://doi.org/10.1007/s10915-015-0062-z
    9. Bhatt, A., Floyd, D., & Moore, B. E. (2015). Second Order Conformal Symplectic Integrators for Damped Hamiltonian  Systems.
    10. Burkovska, O., Haasdonk, B., Salomon, J., & Wohlmuth, B. (2015). Reduced basis methods for pricing options with the Black-Scholes  and Heston model. SIAM Journal on Financial Mathematics (SIFIN), 1408.1220, Article 1408.1220. http://arxiv.org/abs/1408.1220
    11. Burkovska, O., Haasdonk, B., Salomon, J., & Wohlmuth, B. (2015). Reduced Basis Methods for Pricing Options with the Black-Scholes and    Heston Models. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 6(1), Article 1. https://doi.org/10.1137/140981216
    12. Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2015). RBF approximation of large datasets by partition of unity and local  stabilization. In J. Vigo-Aguiar (Ed.), CMMSE 2015 : Proceedings of the 15th International Conference on  Mathematical Methods in Science and Engineering (pp. 317--326).
    13. Chirilus-Bruckner, M., Düll, W.-P., & Schneider, G. (2015). NLS approximation of time oscillatory long waves for equations with quasilinear quadratic terms. Math. Nachr., 288(2–3), Article 2–3. https://doi.org/10.1002/mana.201200325
    14. De Marchi, S., & Santin, G. (2015). Fast computation of orthonormal basis for RBF spaces through Krylov  space methods. BIT Numerical Mathematics, 55(4), Article 4. https://doi.org/10.1007/s10543-014-0537-6
    15. Dihlmann, M., & Haasdonk, B. (2015). A reduced basis Kalman filter for parametrized partial differential  equations. ESAIM: Control, Optimisation and Calculus of Variations. https://doi.org/10.1051/cocv/2015019
    16. Dihlmann, M. A., & Haasdonk, B. (2015). Certified PDE-constrained parameter optimization using reduced  basis surrogate models for evolution problems. COAP, Computational Optimization and Applications, 60(3), Article 3. https://doi.org/DOI: 10.1007/s10589-014-9697-1
    17. do Nascimento, W. N., & Wirth, J. (2015). Wave equations with mass and dissipation. Adv. Differential Equations, 20(7–8), Article 7–8. http://projecteuclid.org/euclid.ade/1431115712
    18. Garmatter, D., Haasdonk, B., & Harrach, B. (2015). A reduced Landweber Method for Nonlinear Inverse Problems. University of Stuttgart.
    19. Geck, M. (2015). Eigenvalues of Real Symmetric Matrices. The American Mathematical Monthly, 122(5), Article 5. https://doi.org/10.4169/amer.math.monthly.122.5.482
    20. Geck, M. (2015). On Kottwitz’ conjecture for twisted involutions. Journal of Lie Theory, 25(2), Article 2. https://www.heldermann.de/JLT/JLT25/JLT252/jlt25019.htm
    21. Geck, M., & Bonnafe, C. (2015). Hecke algebras with unequal parameters and Vogan’s left cell invariants. Representations of Reductive Groups. In Honor of the 60th Birthday of David A. Vogan, Jr (Eds. M. Nevins and P. Trapa), 312, 173--188. https://doi.org/10.1007/978-3-319-23443-4_6
    22. Geck, M., & Halls, A. (2015). On the Kazhdan-Lusztig cells in type E8. Mathematics of Computation, 84(296), Article 296. https://doi.org/10.1090/mcom/2963
    23. Gershon, E., Shaked, U., & Allerhand, L. I. (2015). Stochastic Linear Systems: Robust $H_ınfty$ Control via Vertex-dependent Approach. 23rd Med. Conf. Control and Automation, 638–643. https://doi.org/10.1109/MED.2015.7158818
    24. Gerth, D., Hahn, B. N., & Ramlau, R. (2015). The method of the approximate inverse for atmospheric tomography. Inverse Problems, 31(6), Article 6. https://doi.org/10.1088/0266-5611/31/6/065002
    25. Giesselmann, J. (2015). Entropy as a fundamental principle in hyperbolic conservation laws and related models [Habilitationsschrift].
    26. Giesselmann, J. (2015). Relative entropy in multi-phase models of 1d elastodynamics: Convergence    of a non-local to a local model. JOURNAL OF DIFFERENTIAL EQUATIONS, 258(10), Article 10. https://doi.org/10.1016/j.jde.2015.01.047
    27. Giesselmann, J. (2015). Low Mach asymptotic-preserving scheme for the Euler-Korteweg model. IMA JOURNAL OF NUMERICAL ANALYSIS, 35(2), Article 2. https://doi.org/10.1093/imanum/dru022
    28. Giesselmann, J., Makridakis, C., & Pryer, T. (2015). A posteriori analysis of discontinuous Galerkin schemes for systems  of hyperbolic conservation laws. SIAM J. Numer. Anal., 53, 1280--1303. http://dx.doi.org/10.1137/140970999
    29. Giesselmann, J., & Pryer, T. (2015). ENERGY CONSISTENT DISCONTINUOUS GALERKIN METHODS FOR A    QUASI-INCOMPRESSIBLE DIFFUSE TWO PHASE FLOW MODEL. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION  MATHEMATIQUE ET ANALYSE NUMERIQUE, 49(1), Article 1. https://doi.org/10.1051/m2an/2014033
    30. Goeddeke, D., Altenbernd, M., & Ribbrock, D. (2015). Fault-tolerant finite-element multigrid algorithms with hierarchically    compressed asynchronous checkpointing. PARALLEL COMPUTING, 49, 117–135. https://doi.org/10.1016/j.parco.2015.07.003
    31. Grosan, T., Kohr, M., & Wendland, W. L. (2015). Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman  system in Lipschitz domains. Math. Meth. Appl. Sciences, 38, 3615–3628. https://doi.org/10.1002/mma3302
    32. Gugat, M., Herty, M., & Schleper, V. (2015). flow control in gas networks: exact controllability to a given demand    (vol 34, pg 745, 2011). MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 38(5), Article 5. https://doi.org/10.1002/mma.3122
    33. Göddeke, D., Altenbernd, M., & Ribbrock, D. (2015). Fault-tolerant finite-element multigrid algorithms with hierarchically  compressed asynchronous checkpointing. Parallel Computing, 49, 117–135. https://doi.org/10.1016/j.parco.2015.07.003
    34. Hahn, B. N. (2015). Dynamic linear inverse problems with moderate movements of the object: Ill-posedness and regularization. Inverse Problems & Imaging, 9(2), Article 2. https://doi.org/10.3934/ipi.2015.9.395
    35. Hintermüller, M., & Langer, A. (2015). Non-overlapping domain decomposition methods for dual total variation  based image denoising. Journal of Scientific Computing, 62(2), Article 2. http://link.springer.com/article/10.1007/s10915-014-9863-8
    36. Hänel, A. (2015). Singular problems in quantum and elastic waveguides via Dirichlet-to-Neumann analysis. [Dissertation]. Universität Stuttgart.
    37. Höllig, K., & Hörner, J. (2015). Programming finite element methods with weighted B-splines. Computers & Mathematics with Applications, 70(7), Article 7. https://doi.org/10.1016/j.camwa.2015.02.019
    38. Kaulmann, S., Flemisch, B., Haasdonk, B., Lie, K. A., & Ohlberger, M. (2015). The localized reduced basis multiscale method for two-phase flows in    porous media. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 102(5, SI), Article 5, SI. https://doi.org/10.1002/nme.4773
    39. Kissling, F., & Rohde, C. (2015). The Computation of Nonclassical Shock Waves in Porous Media with  a Heterogeneous Multiscale Method: The Multidimensional Case. Multiscale Model. Simul., 13 no. 4, 1507–1541. https://doi.org/10.1137/120899236
    40. Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2015). Poisson problems for semilinear Brinkman systems on Lipschitz domains  in R^3. ZAMP, 66, 833–846.
    41. Kohr, M., de Cristoforis, M. L., & Wendland, W. L. (2015). Poisson problems for semilinear Brinkman systems on Lipschitz domains in    R-n. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 66(3), Article 3. https://doi.org/10.1007/s00033-014-0439-0
    42. Kohr, M., Pintea, C., & Wendland, W. L. (2015). Poisson-Transmission Problems for -Perturbations of the Stokes System on    Lipschitz Domains in Compact Riemannian Manifolds. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 27(3–4), Article 3–4. https://doi.org/10.1007/s10884-014-9359-0
    43. Kovar\’ık, H., & Weidl, T. (2015). Improved Berezin-Li-Yau inequalities with magnetic field. Proc. Roy. Soc. Edinburgh Sect. A, 145(1), Article 1. https://doi.org/10.1017/S0308210513001595
    44. Kroeker, I., Nowak, W., & Rohde, C. (2015). A stochastically and spatially adaptive parallel scheme for uncertain    and nonlinear two-phase flow problems. COMPUTATIONAL GEOSCIENCES, 19(2), Article 2. https://doi.org/10.1007/s10596-014-9464-5
    45. Kr�ker, I., Nowak, W., & Rohde, C. (2015). A stochastically and spatially adaptive parallel scheme for uncertain  and nonlinear two-phase flow problems. Comput. Geosci., 19(2), Article 2. https://doi.org/10.1007/s10596-014-9464-5
    46. Kutter, M. (2015). A two scale model for liquid phase epitaxy with elasticity [University of Stuttgart]. http://elib.uni-stuttgart.de/opus/volltexte/2015/9833/
    47. Köroglu, H., Scherer, C. W., & Falcone, P. (2015). Robust Static Output Feedback Synthesis under an Integral Quadratic Constraint on the States. Eur. Control Conf., 3203–3208. https://doi.org/10.1109/ECC.2015.7331027
    48. Lienstromberg, C. (2015). A free boundary value problem modelling microelectromechanical systems with general permittivity. Nonlinear Anal. Real World Appl., 25, 190--218. https://doi.org/10.1016/j.nonrwa.2015.03.008
    49. List, F., & Radu, F. A. (2015). A study on iterative methods for solving Richards� equation. http://www.nupus.uni-stuttgart.de/07_Preprints_Publications/Preprints/Preprints-PDFs/Preprint_201506.pdf
    50. Martini, I., & Haasdonk, B. (2015). Output Error Bounds for the Dirichlet-Neumann Reduced Basis Method. Numerical Mathematics and Advanced Applications - ENUMATH 2013, 103, 437--445. https://doi.org/10.1007/978-3-319-10705-9_43
    51. Martini, I., Rozza, G., & Haasdonk, B. (2015). Reduced basis approximation and a-posteriori error estimation for  the coupled Stokes-Darcy system. Advances in Computational Mathematics, 41(5), Article 5. https://doi.org/10.1007/s10444-014-9396-6
    52. Micula, S., & Wendland, W. L. (2015). Trigonometric collocation for nonlinear Riemann-Hilbert problems  in doubly connected domains. IMA J. Num. Analysis, 35, 834–858.
    53. Micula, S., & Wendland, W. L. (2015). Trigonometric collocation for nonlinear Riemann-Hilbert problems on    doubly connected domains. IMA JOURNAL OF NUMERICAL ANALYSIS, 35(2), Article 2. https://doi.org/10.1093/imanum/dru009
    54. Missler, J., Schwarzmann, D., & Allerhand, L. I. (2015). On the Influence of Filter Choice in Output-Feedback MRAC during Adaptation Transients. IFAC-PapersOnline, 48(11), Article 11. https://doi.org/10.1016/j.ifacol.2015.09.236
    55. Müthing, S., Ribbrock, D., & Göddeke, D. (2015). Integrating multi-threading and accelerators into DUNE-ISTL. In A. Abdulle, S. Deparis, D. Kressner, F. Nobile, & M. Picasso (Eds.), Numerical Mathematics and Advanced Applications -- ENUMATH 2013 (Vol. 103, pp. 601--609). Springer. https://doi.org/10.1007/978-3-319-10705-9_59
    56. Neusser, J., Rohde, C., & Schleper, V. (2015). Relaxation of the Navier-Stokes-Korteweg Equations for Compressible  Two-Phase Flow with Phase Transition. J. Numer. Methods Fluids, 79, 615–639. https://doi.org/10.1002/fld.4065
    57. Neusser, J., Rohde, C., & Schleper, V. (2015). Relaxed Navier-Stokes-Korteweg Equations for compressible two-phase  flow with phase transition. J. Numer. Meth. Fluids, 79(12), Article 12. https://doi.org/10.1002/fld.4065
    58. Neusser, J., & Schleper, V. (2015). Numerical schemes for the coupling of compressible and incompressible  fluids in several space dimensions.
    59. Oztepe, G. S., Choudhury, S. R., & Bhatt, A. (2015). Multiple Scales and Energy Analysis of Coupled Rayleigh-Van der Pol  Oscillators with Time-Delayed Displacement and Velocity Feedback:  Hopf Bifurcations and Amplitude Death. Far East Journal of Dynamical Systems. https://doi.org/10.17654/FJDSMar2015_031_059
    60. Redeker, M., & Haasdonk, B. (2015). A POD-EIM reduced two-scale model for crystal growth. Advances in Computational Mathematics, 41(5), Article 5. https://doi.org/10.1007/s10444-014-9367-y
    61. Redeker, M., & Haasdonk, B. (2015). A POD-EIM reduced two-scale model for precipitation in porous media [SimTech Preprint]. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=964
    62. Rohde, C., & Zeiler, C. (2015). A relaxation Riemann solver for compressible two-phase flow with  phase transition and surface tension. Appl. Numer. Math., 95, 267--279. https://doi.org/10.1016/j.apnum.2014.05.001
    63. Ruzhansky, M., & Wirth, J. (2015). L-p Fourier multipliers on compact Lie groups. Math. Z., 280(3–4), Article 3–4. https://doi.org/10.1007/s00209-015-1440-9
    64. Rybak, I., Magiera, J., Helmig, R., & Rohde, C. (2015). Multirate time integration for coupled saturated/unsaturated porous  medium and free flow systems. Comput. Geosci., 19, 299--309. https://doi.org/10.1007/s10596-015-9469-8
    65. Rybak, I. V., Gray, W. G., & Miller, C. T. (2015). Modeling two-fluid-phase flow and species transport in porous media. J. Hydrology, 521, 565--581. http://www.sciencedirect.com/science/article/pii/S002216941400972X
    66. Scherer, C. W. (2015). Gain-Scheduling Control with dynamic Multipliers by Convex Optimization. SIAM J. Contr. Optim., 53(3), Article 3. https://doi.org/10.1137/140985871
    67. Schleper, V. (2015). Nonlinear Transport and Coupling of Conservation Laws.
    68. Schleper, V. (2015). A hybrid model for traffic flow and crowd dynamics with random individual  properties. Math. Biosci. Eng., 12(2), Article 2. https://doi.org/10.3934/mbe.2015.12.393
    69. Schmidt, A., Dihlmann, M., & Haasdonk, B. (2015). Basis generation approaches for a reduced basis linear quadratic  regulator. Proc. MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling, 713--718. https://doi.org/10.1016/j.ifacol.2015.05.016
    70. Schmidt, A., & Haasdonk, B. (2015). Reduced Basis Approximation of Large Scale Algebraic Riccati Equations. University of Stuttgart.
    71. Schmidt, A., & Haasdonk, B. (2015). Reduced basis method for $H_2$ optimal feedback control problems. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1442
    72. Steinwart, I. (2015). Measuring the capacity of sets of functions in the analysis of ERM. In A. Gammerman & V. Vovk (Eds.), Festschrift in Honor of Alexey Chervonenkis (pp. 223--239). Springer. https://doi.org/10.1007/978-3-642-41136-6
    73. Steinwart, I. (2015). Supplement A to ``Fully Adaptive Density-Based Clustering’’ (Nos. 2013–016; Issues 2013–016). Fakultät für Mathematik und Physik, Universität Stuttgart. https://doi.org/10.1214/15-AOS1331SUPP
    74. Steinwart, I. (2015). Supplement B to ``Fully Adaptive Density-Based Clustering’’. Fakultät für Mathematik und Physik, Universität Stuttgart. https://doi.org/10.1214/15-AOS1331SUPP
    75. Steinwart, I. (2015). Fully Adaptive Density-Based Clustering. Ann. Statist., 43, 2132--2167. https://doi.org/10.1214/15-AOS1331
    76. Thomann, P., Steinwart, I., & Schmid, N. (2015). Towards an Axiomatic Approach to Hierarchical Clustering of Measures. J. Mach. Learn. Res., 16, 1949--2002.
    77. Veenman, J. (2015). A general framework for robust analysis and control: an integral quadratic constraint based approach [Dissertation, Logos Verlag, Berlin]. http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3963&lng=eng&id=
    78. Wirth, J. (2015). Diffusion phenomena for partially dissipative hyperbolic              systems. In Nonlinear dynamics in partial differential equations (Vol. 64, pp. 303--310). Math. Soc. Japan, Tokyo.
    79. Wirtz, D., Karajan, N., & Haasdonk, B. (2015). Surrogate Modelling of multiscale models using kernel methods. International Journal of Numerical Methods in Engineering, 101(1), Article 1. https://doi.org/10.1002/nme.4767
    80. Wirtz, D., Karajan, N., & Haasdonk, B. (2015). Surrogate modeling of multiscale models using kernel methods. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 101(1), Article 1. https://doi.org/10.1002/nme.4767
    81. Zeiler, C. (2015). Liquid Vapor Phase Transitions: Modeling, Riemann Solvers and Computation [Verlag Dr. Hut]. http://elib.uni-stuttgart.de/handle/11682/8919%7D
  11. 2014

    1. Adibi, H., & Minbashian, H. (2014). Integral Equations (in Persian). Amirkabir University of Technology Press.
    2. Aki, G. L., Dreyer, W., Giesselmann, J., & Kraus, C. (2014). A quasi-incompressible diffuse interface model with phase transition. Math. Models Methods Appl. Sci., 24(5), Article 5. https://doi.org/10.1142/S0218202513500693
    3. Apprich, C., Höllig, K., Hörner, J., Keller, A., & Yazdani, E. N. (2014). Finite Element Approximation with Hierarchical B-Splines. In J.-D. Boissonnat, A. Cohen, O. Gibaru, C. Gout, T. Lyche, M.-L. Mazure, & L. L. Schumaker (Eds.), Curves and Surfaces (Vol. 9213, pp. 1–15). Springer. http://dblp.uni-trier.de/db/conf/cas/cas2014.html#ApprichHHKY14
    4. Armiti-Juber, A., & Rohde, C. (2014). Almost Parallel Flows in Porous Media. In J. Fuhrmann, M. Ohlberger, & C. Rohde (Eds.), Finite Volumes for Complex Applications VII-Elliptic, Parabolic and  Hyperbolic Problems (Vol. 78, pp. 873–881). Springer International Publishing. https://doi.org/10.1007/978-3-319-05591-6_88
    5. Barth, A., & Benth, F. E. (2014). The forward dynamics in energy markets -- infinite-dimensional modelling  and simulation. Stochastics, 86(6), Article 6. https://doi.org/10.1080/17442508.2014.895359
    6. Barth, A., & Moreno-Bromberg, S. (2014). Optimal risk and liquidity management with costly refinancing opportunities. Insurance Math. Econom., 57, 31--45. https://doi.org/10.1016/j.insmatheco.2014.05.001
    7. Bastian, P., Engwer, C., Göddeke, D., Iliev, O., Ippisch, O., Ohlberger, M., Turek, S., Fahlke, J., Kaulmann, S., Müthing, S., & Ribbrock, D. (2014). EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications. In L. Lopes, J. Zilinskas, A. Costan, RobertoG. Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro, L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia, S. Hunold, StephenL. Scott, S. Lankes, C. Lengauer, J. Carretero, J. Breitbart, & M. Alexander (Eds.), Euro-Par 2014: Parallel Processing Workshops (Vol. 8806, pp. 530--541). Springer. https://doi.org/10.1007/978-3-319-14313-2_45
    8. Bonnafé, C., & Geck, M. (2014). Conjugacy classes of involutions and Kazhdan–Lusztig cells. Representation Theory of the American Mathematical Society, 18(6), Article 6. https://doi.org/10.1090/s1088-4165-2014-00456-4
    9. Burkovska, O., Haasdonk, B., Salomon, J., & Wohlmuth, B. (2014). Reduced basis methods for pricing options with the Black-Scholes and Heston model (Preprint No. 1408.1220; Issue 1408.1220). Arxiv. http://arxiv.org/abs/1408.1220
    10. Bürger, R., Kröker, I., & Rohde, C. (2014). A hybrid stochastic Galerkin method for uncertainty quantification  applied to a conservation law modelling a clarifier-thickener unit. ZAMM Z. Angew. Math. Mech., 94(10), Article 10. https://doi.org/10.1002/zamm.201200174
    11. Chalons, C., Engel, P., & Rohde, C. (2014). A Conservative and Convergent Scheme for Undercompressive Shock Waves. SIAM J. Numer. Anal., 52(1), Article 1. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=732
    12. Chirilus-Bruckner, M., Düll, W.-P., & Schneider, G. (2014). Validity of the KdV equation for the modulation of periodic traveling waves in the NLS equation. J. Math. Anal. Appl., 414(1), Article 1. https://doi.org/10.1016/j.jmaa.2013.12.061
    13. Corli, A., Rohde, C., & Schleper, V. (2014). Parabolic approximations of diffusive-dispersive equations. J. Math. Anal. Appl., 414, 773–798. http://dx.doi.org/10.1016/j.jmaa.2014.01.049
    14. Cruz-Uribe, D., Fiorenza, A., Ruzhansky, M., & Wirth, J. (2014). Variable Lebesgue spaces and hyperbolic systems. In Advanced Courses in Mathematics. CRM Barcelona (p. x+169). Birkhäuser/Springer, Basel.
    15. Dihlmann, M., & Haasdonk, B. (2014). A reduced basis Kalman filter for parametrized partial differential equations. University of Stuttgart.
    16. Dreyer, W., Giesselmann, J., & Kraus, C. (2014). Modeling of compressible electrolytes with phase transition. http://arxiv.org/abs/1405.6625
    17. Dreyer, W., Giesselmann, J., & Kraus, C. (2014). A compressible mixture model with phase transition. Physica D, 273–274, 1–13. http://dx.doi.org/10.1016/j.physd.2014.01.006
    18. Düll, W.-P., Kirchhoff, A., & Schneider, G. (2014). The existence of bifurcating invariant tori in a spatially              extended reaction-diffusion-convection system with spatially              localized amplification. J. Nonlinear Sci., 24(2), Article 2. https://doi.org/10.1007/s00332-013-9190-5
    19. Ehlers, W., Helmig, R., & Rohde, C. (2014). Editorial: Deformation and transport phenomena in porous media. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift F�r Angewandte Mathematik Und Mechanik, 94(7–8), Article 7–8. https://doi.org/10.1002/zamm.201400559
    20. Engel, P., Viorel, A., & Rohde, C. (2014). A Low-Order Approximation for Viscous-Capillary Phase Transition  Dynamics. Port. Math., 70(4), Article 4. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=723
    21. Eymard, R., & Schleper, V. (2014). Study of a numerical scheme for miscible two-phase flow in porous  media. Numer. Meth. Part. D. E., 30, 723–748. https://doi.org/10.1002/num.21823
    22. Fechter, S., Zeiler, C., Munz, C.-D., & Rohde, C. (2014). Simulation of compressible multi-phase flows at extreme ambient conditions  using a Discontinuous-Galerkin Method. ILASS�Europe, 26th European Conference on Liquid Atomization and  Spray Systems.
    23. Finite Volumes for Complex Applications VII Elliptic, Parabolic and  Hyperbolic Problems, FVCA 7, Berlin, June 2014. (2014). In J. Fuhrmann, M. Ohlberger, & C. Rohde (Eds.), Springer Proceedings in Mathematics & Statistics: Vol. Vol. 77/78.
    24. Garikapati, H. (2014). A PGD Based Preconditioner for Scalar Elliptic Problems.
    25. Gaspoz, F. D., & Morin, P. (2014). Approximation classes for adaptive higher order finite element approximation. Math. Comp., 83(289), Article 289. https://doi.org/10.1090/S0025-5718-2013-02777-9
    26. Geck, M. (2014). On the Characterization of Galois Extensions. The American Mathematical Monthly, 121(7), Article 7. https://doi.org/10.4169/amer.math.monthly.121.07.637
    27. Geck, M. (2014). Algebra: Gruppen, Ringe, Körper. Mit einer Einführung in die Darstellungstheorie endlicher Gruppen. edition delkhofen.
    28. Geck, M. (2014). Kazhdan-Lusztig cells and the Frobenius-Schur indicator. Journal of Algebra, 398, 329--342. https://doi.org/10.1016/j.jalgebra.2013.01.019
    29. Giesselmann, J. (2014). A Relative Entropy Approach to Convergence of a Low Order Approximation  to a Nonlinear Elasticity Model with Viscosity and Capillarity. SIAM J. Math. Anal., 46(5), Article 5. https://doi.org/10.1137/140951710
    30. Giesselmann, J., Makridakis, C., & Pryer, T. (2014). Energy consistent DG methods for the Navier-Stokes-Korteweg system. Math. Comp., 83, 2071-- 2099. http://dx.doi.org/10.1090/S0025-5718-2014-02792-0
    31. Giesselmann, J., & M�ller, T. (2014). Estimating the Geometric Error of Finite Volume Schemes for Conservation  Laws on Surfaces for generic numerical flux functions. In M. O. J. Fuhrmann & C. Rohde (Eds.), Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects (Vol. 77).
    32. Giesselmann, J., & M�ller, T. (2014). Geometric error of finite volume schemes for conservation laws on  evolving surfaces. Numer. Math., 128(3), Article 3. https://doi.org/10.1007/s00211-014-0621-5
    33. Giesselmann, J., & Pryer, T. (2014). On aposteriori error analysis of DG schemes approximating hyperbolic  conservation laws. In M. O. J. Fuhrmann & C. Rohde (Eds.), Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects (Vol. 77).
    34. Giesselmann, J., & Tzavaras, A. E. (2014). Singular Limiting Induced from Continuum Solutions and the Problem  of Dynamic Cavitation. Arch. Ration. Mech. Anal., 212(1), Article 1. https://doi.org/10.1007/s00205-013-0677-x
    35. Giesselmann, J., & Tzavaras, A. E. (2014). On cavitation in elastodynamics. In F. Ancona, A. Bressan, P. Marcati, & A. Marson (Eds.), Hyperbolic Problems: Theory, Numerics, Applications (pp. 599–606). AIMS. https://aimsciences.org/books/am/AMVol8.html
    36. Göddeke, D., Komatitsch, D., & Möller, M. (2014). Finite and Spectral Element Methods on Unstructured Grids for Flow  and Wave Propagation Methods. In V. Kindratenko (Ed.), Numerical Computations with GPUs (pp. 183--206). Springer. https://doi.org/10.1007/978-3-319-06548-9_9
    37. Haasdonk, B. (2014). Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction  for Stationary and Instationary Problems [SimTech Preprint]. IANS, University of Stuttgart, Germany. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938
    38. Haasdonk, B., & Ohlberger, M. (2014). Wenn die Probleme zahlreicher werden: Reduzierte Basis Methoden  f�r effiziente und gesicherte numerische Simulation. GAMM Rundbrief, 2014(1), Article 1.
    39. Haasdonk, B., & Ohlberger, M. (2014). Wenn die Probleme zahlreicher werden: Reduzierte Basis Methoden für effiziente und gesicherte numerische Simulation. GAMM Rundbrief, 2014(1), Article 1.
    40. Hahn, B. N. (2014). Efficient algorithms for linear dynamic inverse problems with known motion. Inverse Problems, 30(3), Article 3. https://doi.org/10.1088/0266-5611/30/3/035008
    41. Hahn, B. N. (2014). Reconstruction of dynamic objects with affine deformations in computerized tomography. Journal of Inverse and Ill-Posed Problems, 22(3), Article 3. https://doi.org/10.1515/jip-2012-0094
    42. Hang, H., & Steinwart, I. (2014). Fast Learning from $\alpha$-mixing Observations. J. Multivariate Anal., 127, 184--199. https://doi.org/10.1016/j.jmva.2014.02.012
    43. Harbrecht, H., Wendland, W. L., & Zorii, N. (2014). Riesz minimal energy problems on C^k-1,1 manifolds. Math. Nachr., 287, 48–69.
    44. Hintermüller, M., & Langer, A. (2014). Adaptive Regularization for Parseval Frames in Image Processing. SFB-Report No. 2014-014. http://people.ricam.oeaw.ac.at/a.langer/publications/SFB-Report-2014-014.pdf
    45. Hintermüller, M., & Langer, A. (2014). Surrogate Functional Based Subspace Correction Methods for Image  Processing. In Domain Decomposition Methods in Science and Engineering XXI (pp. 829--837). Springer. http://link.springer.com/chapter/10.1007/978-3-319-05789-7_80
    46. Kabil, B., & Rohde, C. (2014). The influence of surface tension and configurational forces on the  stability of liquid-vapor interfaces. Nonlinear Analysis: Theory, Methods & Applications, 107(0), Article 0. http://dx.doi.org/10.1016/j.na.2014.04.003
    47. Kaulmann, S., Flemisch, B., Haasdonk, B., Lie, K.-A., & Ohlberger, M. (2014). The localized reduced basis multiscale method for two-phase flows in porous media. International Journal for Numerical Methods in Engineering. https://doi.org/10.1002/nme.4773
    48. Kaulmann, S., Flemisch, B., Haasdonk, B., Lie, K. A., & Ohlberger, M. (2014). The Localized Reduced Basis Multiscale method for two-phase flow in porous media. arXiv preprint arXiv:1405.2810.
    49. Kazaz, L. (2014). Black Box Model Order Reduction of Nonlinear Systems with Kernel  and Discrete Empirical Interpolation.
    50. Kohls, K., Rösch, A., & Siebert, K. G. (2014). A Posteriori Error Analysis of Optimal Control Problems with Control  Constraints. SIAM J. Control Optim., 52(3), 1832�1861. (30 pages). http://dx.doi.org/10.1137/130909251
    51. Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2014). Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains. J. Math. Fluid Mechanics, 16, 595–830.
    52. Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2014). Nonlinear Darcy-Forchheimer-Brinkman system with linear boundary  conditions in Lipschitz domains. In A. G. T. Aliev Azerogly & S. V. Rogosin (Eds.), Complex Analysis and Potential Theory with Applications (pp. 111–124). Cambridge Sci. Publ.
    53. Kohr, M., Pintea, C., & Wendland, W. L. (2014). Neumann-transmission problems for pseudodifferential Brinkman operators  on Lipschitz domains in compact Riemannian manifolds. Communications in Pure and Applied Analysis, 13, 1–28. https://doi.org/03934/cpaa.2013.13.
    54. Köppel, M., Kröker, I., & Rohde, C. (2014). Stochastic Modeling for Heterogeneous Two-Phase Flow. In J. Fuhrmann, M. Ohlberger, & C. Rohde (Eds.), Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects (Vol. 77, pp. 353–361). Springer International Publishing. https://doi.org/10.1007/978-3-319-05684-5_34
    55. Maier, I., & Haasdonk, B. (2014). A Dirichlet-Neumann reduced basis method for homogeneous domain  decomposition problems. Applied Numerical Mathematics, 78, 31--48. https://doi.org/10.1016/j.apnum.2013.12.001
    56. Mazzeo, R., Swoboda, J., Weiß, H., & Witt, F. (2014). Limiting configurations for solutions of Hitchin’s equation. In Actes de Séminaire de Théorie Spectrale et Géométrie. Année 2012--2014 (pp. 91--116). St. Martin d’Hères: Université de Grenoble I, Institut Fourier. https://doi.org/10.5802/tsg.296
    57. Müthing, S., Bastian, P., Göddeke, D., & Ribbrock, D. (2014). Node-level performance engineering for an advanced density driven  porous media flow solver. 3rd Workshop on Computational Engineering 2014, Stuttgart, Germany, 109--113.
    58. Redeker, M. (2014). Adaptive two-scale models for processes with evolution of microstructures [University of Stuttgart]. http://elib.uni-stuttgart.de/opus/volltexte/2014/9443
    59. Rossi, E., & Schleper, V. (2014). Convergence of a numerical scheme for a mixed hyperbolic-parabolic  system in two space dimensions. http://www.mathematik.uni-stuttgart.de/preprints/downloads/2015/2015-003.pdf
    60. Ruzhansky, M., Turunen, V., & Wirth, J. (2014). Hörmander class of pseudo-differential operators on compact Lie groups and global hypoellipticity. J. Fourier Anal. Appl., 20(3), Article 3. https://doi.org/10.1007/s00041-014-9322-9
    61. Ruzhansky, M., & Wirth, J. (2014). Asymptotic behaviour of solutions to hyperbolic equations and systems. In Variable Lebesgue spaces and hyperbolic systems (pp. 91--169). Birkhäuser/Springer, Basel.
    62. Ruzhansky, M., & Wirth, J. (2014). Global functional calculus for operators on compact Lie groups. J. Funct. Anal., 267(1), Article 1. https://doi.org/10.1016/j.jfa.2014.04.009
    63. Rybak, I. (2014). Coupling free flow and porous medium flow systems using sharp interface  and transition region concepts. In J. Fuhrmann, M. Ohlberger, & C. Rohde (Eds.), Finite Volumes for Complex Applications VII - Elliptic, Parabolic  and Hyperbolic Problems, FVCA 7 (Vol. 78, pp. 703--711). Springer. https://doi.org/10.1007/978-3-319-05591-6_70
    64. Rybak, I., & Magiera, J. (2014). A multiple-time-step technique for coupled free flow and porous medium  systems. J. Comput. Phys., 272, 327--342. https://doi.org/10.1016/j.jcp.2014.04.036
    65. Scherer, C. W. (2014). $H_ınfty$- and $H_2$-synthesis for nested interconnections: A direct state-space approach by linear matrix inequalities. 21st Int. Symp. Math. Theory Netw. and Systems. http://fwn06.housing.rug.nl/mtns2014-papers/fullPapers/0141.pdf
    66. Staehle, M. (2014). Anisotrope Diffusion zur Bildfilterung.
    67. Steinwart, I., Pasin, C., Williamson, R., & Zhang, S. (2014). Elicitation and Identification of Properties. In M. F. Balcan & C. Szepesvari (Eds.), JMLR Workshop and Conference Proceedings Volume 35: Proceedings of the 27th Conference on Learning Theory 2014 (pp. 482--526).
    68. Veenman, J., & Scherer, C. W. (2014). A synthesis framework for robust gain-scheduling controllers. Automatica, 50(11), Article 11. https://doi.org/10.1016/j.automatica.2014.10.002
    69. Veenman, J., & Scherer, C. W. (2014). IQC-synthesis with general dynamic multipliers. Int. J. Robust Nonlin., 24(17), Article 17. https://doi.org/10.1002/rnc.3042
    70. Wendland, W. L. (2014). Martin Costabel’s version of the trace theorem revisited. Math. Methods Appl. Sci., 37 (13), 1924–1955.
    71. Wirth, J. (2014). Diffusion phenomena for partially dissipative hyperbolic              systems. J. Math. Anal. Appl., 414(2), Article 2. https://doi.org/10.1016/j.jmaa.2014.01.034
    72. Wirtz, D., Sorensen, D. C., & Haasdonk, B. (2014). A-posteriori error estimation for DEIM reduced nonlinear dynamical  systems. SIAM J. Sci. Comp., 36(2), Article 2. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=733
    73. Wittwar, D. (2014). Empirische Interpolation and Anwendung zur Numerischen Integration.
  12. 2013

    1. Abdulle, A., Barth, A., & Schwab, C. (2013). Multilevel Monte Carlo methods for stochastic elliptic multiscale  PDEs. Multiscale Model. Simul., 11(4), Article 4. https://doi.org/10.1137/120894725
    2. Amsallem, D., Haasdonk, B., & Rozza, G. (2013). A Conference within a Conference for MOR Researchers. SIAM News, 46(6), Article 6. http://www.siam.org/news/news.php?id=2089
    3. Barth, A., & Lang, A. (2013). L^p and almost sure convergence of a Milstein scheme for stochastic  partial differential equations. Stochastic Process. Appl., 123(5), Article 5. https://doi.org/10.1016/j.spa.2013.01.003
    4. Barth, A., Lang, A., & Schwab, C. (2013). Multilevel Monte Carlo method for parabolic stochastic partial  differential equations. BIT, 53(1), Article 1. https://doi.org/10.1007/s10543-012-0401-5
    5. Bissinger, T. (2013). Verfahren zur Stabilen Kerninterpolation.
    6. Chaudenson, J., Fetzer, M., Scherer, C. W., Beauvois, D., Sandou, G., Bennani, S., & Ganet-Shoeller, M. (2013). Stability analysis of pulse-modulated systems with an application to space launchers. IFAC Proc. Vol., 46(19), Article 19. https://doi.org/10.3182/20130902-5-DE-2040.00082
    7. Curto, C., Degeratu, A., & Itskov, V. (2013). Encoding Binary Neural Codes in Networks of Threshold-Linear Neurons. Neural Computation, 25(11), Article 11. https://doi.org/10.1162/neco_a_00504
    8. De Marchi, S., & Santin, G. (2013). A new stable basis for radial basis function interpolation. J. Comput. Appl. Math., 253, 1--13. https://doi.org/10.1016/j.cam.2013.03.048
    9. Degeratu, A., & Stern, M. (2013). Witten spinors on nonspin manifolds. Comm. Math. Phys., 324(2), Article 2. https://doi.org/10.1007/s00220-013-1804-0
    10. Dihlmann, M., & Haasdonk, B. (2013). Certified Nonlinear Parameter Optimization with Reduced Basis Surrogate  Models. PAMM, Proc. Appl. Math. Mech., Special Issue: 84th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Novi Sad 2013; Editors: L. Cvetkovic, T. Atanackovic and  V. Kostic, 13(1), Article 1. https://doi.org/doi: 10.1002/pamm.201310002
    11. Dihlmann, M. A., & Haasdonk, B. (2013). Certified PDE-constrained parameter optimization using reduced basis  surrogate models for evolution problems [SimTech Preprint]. University of Stuttgart (The final publication is available at Springer  via http://dx.doi.org/10.1007/s10589-014-9697-1).
    12. Düll, W.-P. (2013). Validity of the Cahn-Hilliard approximation for modulations of slightly unstable pattern in the real Ginzburg-Landau equation. Nonlinear Anal. Real World Appl., 14(6), Article 6. https://doi.org/10.1016/j.nonrwa.2013.04.007
    13. Eberts, M., & Steinwart, I. (2013). Optimal regression rates for SVMs using Gaussian kernels. Electron. J. Stat., 7, 1--42. https://doi.org/10.1214/12-EJS760
    14. Eck, Ch., Kutter, M., Sändig, A.-M., & Rohde, Ch. (2013). A two scale model for liquid phase epitaxy with elasticity: An iterative  procedure. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 93(10–11), Article 10–11. https://doi.org/10.1002/zamm.201200238
    15. Eisenschmidt, K., Rauschenberger, P., Rohde, C., & Weigand, B. (2013). Modelling of freezing processes in super-cooled droplets on sub-grid  scale. ILASS�Europe, 25th European Conference on Liquid Atomization and  Spray Systems.
    16. Fechter, S., Jägle, F., & Schleper, V. (2013). Exact and approximate Riemann solvers at phase boundaries. Computers & Fluids, 75, 112--126. https://doi.org/10.1016/j.compfluid.2013.01.024
    17. Fehr, J., Fischer, M., Haasdonk, B., & Eberhard, P. (2013). Greedy-based Approximation of Frequency-weighted Gramian Matrices  for Model Reduction in Multibody Dynamics. ZAMM, 93(8), Article 8. https://doi.org/10.1002/zamm.201200014
    18. Fericean, D., Grosan, T., Kohr, M., & Wendland, W. L. (2013). Interface boundary value problems of Robin-transmission type for  the Stokes and Brinkman systems on n-dimensional Lipschitz domains:  Applications. Math. Methods Appl. Sci., 36, 1631–1648. https://doi.org/10.1002/mma.2716
    19. Fericean, D., & Wendland, W. L. (2013). Layer potential analysis for a Dirichlet-transmission problem in  Lipschitz domains in R^n. ZAMM, 93, 762–776. https://doi.org/10.1002/zamm.20100185
    20. Fino, A., Semmelmann, U., Wiśniewski, J., & Witt, F. (Eds.). (2013). Mini-workshop: Quaternion Kähler Structures in              Riemannian and Algebraic Geometry. Oberwolfach Rep., 10(4), Article 4. https://doi.org/10.4171/OWR/2013/53
    21. Geck, M. (2013). An Introduction to Algebraic Geometry and Algebraic Groups. In Oxford Graduate Texts in Mathematics (Vol. 10, p. ix+307). Oxford University Press.
    22. Geck, M., & Iancu, L. (2013). Ordering Lusztig’s families in type Bn. J. Algebr. Comb., 38, 457–489. https://doi.org/DOI 10.1007/s10801-012-0411-z
    23. Geck, M., & Malle, G. (2013). Frobenius-Schur indicators of unipotent characters and the twisted involution module. Representation Theory of the American Mathematical Society, 17(5), Article 5. https://doi.org/10.1090/s1088-4165-2013-00430-2
    24. Geveler, M., Ribbrock, D., Göddeke, D., Zajac, P., & Turek, S. (2013). Towards a complete FEM-based simulation toolkit on GPUs: Unstructured  Grid Finite Element Geometric Multigrid solvers with strong smoothers  based on Sparse Approximate Inverses. Computers & Fluids, 80, 327--332. https://doi.org/10.1016/j.compfluid.2012.01.025
    25. Giesselmann, J. (2013). Cavitation and Singular Solutions in Nonlinear Elastodynamics. PAMM 13, 363–364. https://doi.org/10.1002/pamm.201310177
    26. Giesselmann, J., Miroshnikov, A., & Tzavaras, A. E. (2013). The problem of dynamic cavitation in nonlinear elasticity. S�minaire Laurent Schwartz � EDP et Applications. http://slsedp.cedram.org/cedram-bin/article/SLSEDP_2012-2013____A14_0.pdf
    27. Göddeke, D., Komatitsch, D., Geveler, M., Ribbrock, D., Rajovic, N., Puzovic, N., & Ramirez, A. (2013). Energy efficiency vs. performance of the numerical solution of PDEs:  an application study on a low-power ARM-based cluster. Journal of Computational Physics, 237, 132--150. https://doi.org/10.1016/j.jcp.2012.11.031
    28. Göttlich, S., Hoher, S., Schindler, P., Schleper, V., & Verl, A. (2013). Modeling, simulation and validation of material flow on conveyor  belts. Appl. Math. Modell., 38(13), Article 13. http://dx.doi.org/10.1016/j.apm.2013.11.039
    29. Haasdonk, B. (2013). Convergence Rates of the POD--Greedy Method. ESAIM: Mathematical Modelling and Numerical Analysis, 47(3), Article 3. https://doi.org/10.1051/m2an/2012045
    30. Haasdonk, B., Urban, K., & Wieland, B. (2013). Reduced basis methods for parametrized partial differential equations  with stochastic influences using the Karhunen Loeve expansion. SIAM/ASA J. Unc. Quant., 1, 79–105.
    31. Hahn, B. N., Louis, A. K., Maisl, M., & Schorr, C. (2013). Combined reconstruction and edge detection in dimensioning. Meas. Sci. Technol, 24(12), Article 12. https://doi.org/10.1088/0957-0233/24/12/125601
    32. Heine, C.-J., M�ller, C. A., Peter, M. A., & Siebert, K. G. (2013). Multiscale adaptive simulations of concrete carbonation taking into  account the evolution of the microstructure. In C. Hellmich, B. Pichler, & D. Adam (Eds.), Poromechanics: Vol. V (p. 1964�1972). ASCE. http://dx.doi.org/10.1061/9780784412992.232
    33. Hintermüller, M., & Langer, A. (2013). Subspace Correction Methods for a Class of Nonsmooth and Nonadditive  Convex Variational Problems with Mixed L\^1/L\^2 Data-Fidelity  in Image Processing. SIAM Journal on Imaging Sciences, 6(4), Article 4. http://epubs.siam.org/doi/abs/10.1137/120894130
    34. Höllig, K., & Hörner, J. (2013). Approximation and Modeling with B-Splines. (pp. I–XIII, 1–211). SIAM.
    35. Kaulmann, S., & Haasdonk, B. (2013). Online Greedy Reduced Basis Construction using Dictionaries [SimTech Preprint]. University of Stuttgart.
    36. Kerr, M. M., & Kollross, A. (2013). Nonnegatively curved homogeneous metrics in low dimensions. Annals of Global Analysis and Geometry, 43(3), Article 3. https://doi.org/10.1007/s10455-012-9345-x
    37. Kerr, M. M., & Kollross, A. (2013). Nonnegatively curved homogeneous metrics obtained by scaling fibers of submersions. Geometriae Dedicata, 166(1), Article 1. https://doi.org/10.1007/s10711-012-9795-0
    38. Kissling, F., & Karlsen, K. H. (2013). On the singular limit of a two-phase flow equation with heterogeneities  and dynamic capillary pressure. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, n/a--n/a. https://doi.org/10.1002/zamm.201200141
    39. Kissling, F. (2013). Analysis and Numerics for Nonclassical Wave Fronts in Porous Media [Universit�t Stuttgart]. http://www.dr.hut-verlag.de/978-3-8439-0996-9.html
    40. Kohr, M., Pintea, C., & Wendland, W. L. (2013). Dirichlet-transmission problems for pseudodifferential Brinkman operators  on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian  manifolds. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 93, 446–458. https://doi.org/10.1002/zamm.201100194
    41. Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2013). Nonlinear Neumann-Transmission Problems for Stokes and Brinkman Equations  on Euclidean Lipschitz Domains. Potential Analysis, 38, 1123–1171. https://doi.org/10.1007/s.11118-012-9310-0
    42. Kohr, M., Pintea, C., & Wendland, W. L. (2013). Layer Potential Analysis for Pseudodifferential Matrix Operators  in Lipschitz Domains on Compact Riemannian Manifolds: Applications  to Pseudodifferential Brinkman Operators. International Mathematics Research Notices, 2013 (19), 4499–4588. https://doi.org/10.1093/imnr/run999
    43. Kollross, A., & Lytchak, A. (2013). Polar actions on symmetric spaces of higher rank. Bulletin of the London Mathematical Society, 45(2), Article 2. https://doi.org/10.1112/blms/bds091
    44. Kreplin, D. (2013). Adaptive Reduzierte Basis Methoden f�r Evolutionsprobleme.
    45. Kröker, I. (2013). Stochastic models for nonlinear convection-dominated flows. Universit�t Stuttgart.
    46. K�ppel, M. (2013). Flow Modelling of Coupled Fracture-Matrix Porous Media Systems with  a Two Mesh Concept [Diplomarbeit]. Institut f�r Wasserbau, Universit�t Stuttgart, Zusammenarbeit mit  Pomdapi INRIA Rocquencourt . Paris, France.
    47. Langer, A., Osher, S., & Schönlieb, C.-B. (2013). Bregmanized domain decomposition for image restoration. Journal of Scientific Computing, 54(2–3), Article 2–3. http://link.springer.com/article/10.1007/s10915-012-9603-x
    48. Moutari, S., Herty, M., Klein, A., Oeser, M., Schleper, V., & Steinaur, G. (2013). Modeling road traffic accidents using macroscopic second-order models  of traffic flow. IMA Journal of Applied Mathematics, 78(5), Article 5. https://doi.org/doi: 10.1093/imamat/hxs012
    49. Nitsch, F. (2013). Stability Analysis of Linear Time-periodic Systems.
    50. Ortmann, V. (2013). Empirische Matrixinterpolation.
    51. Ostrowski, L. (2013). LQR control for Parametric Systems with Reduced Basis Controllers.
    52. Redeker, M., & Eck, C. (2013). A fast and accurate adaptive solution strategy for two-scale models  with continuous inter-scale dependencies. Journal of Computational Physics, 240, 268–283. https://doi.org/10.1016/j.jcp.2012.12.025
    53. Rohde, C., Wang, W., & Xie, F. (2013). Decay Rates to Viscous Contact Waves for a 1D Compressible Radiation  Hydrodynamics Model. Mathematical Models and Methods in Applied Sciences, 23(03), Article 03. https://doi.org/10.1142/S0218202512500522
    54. Rohde, C., Wang, W., & Xie, F. (2013). Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation  hydrodynamics model: superposition of rarefaction and contact waves. Communications on Pure and Applied Analysis, 12(5), Article 5. https://doi.org/10.3934/cpaa.2013.12.2145
    55. Ruzhanski\uı, M. V., & Virt, I. (2013). On multipliers on compact Lie groups. Funktsional. Anal. i Prilozhen., 47(1), Article 1. https://doi.org/10.1007/s10688-013-0010-3
    56. Sachs, A. (2013). Proper-Generalized-Decomposition-Methode für elliptische partielle  Differentialgleichungen.
    57. Scherer, C. W. (2013). Gain-scheduled synthesis with dynamic generalized strictly positive real multipliers: A complete solution. 52nd IEEE Conf. Decision and Control, 4116–4121. https://doi.org/10.1109/CDC.2013.6760520
    58. Scherer, C. W. (2013). Structured $H_ınfty$-Optimal Control for Nested Interconnections: A State-Space Solution. Syst. Control Lett., 62(12), Article 12. https://doi.org/10.1016/j.sysconle.2013.09.001
    59. Scherer, C. W., & Köse, I. E. (2013). From transfer matrices to realizations: Convergence properties and parametrization of robustness analysis conditions. Syst. Control Lett., 62(8), Article 8. https://doi.org/10.1016/j.sysconle.2013.04.001
    60. Scherer, C. W. (2013). Gain-scheduled synthesis with dynamic stable strictly positive real multipliers: A complete solution. Eur. Control Conf., 3901–3906. https://doi.org/10.23919/ECC.2013.6669184
    61. Schmidt, A. (2013). Galerkin-Radiosity.
    62. Seus, D. (2013). Spektralasymptotiken auf dem Loopgraphen.
    63. Simon, A. (2013). Vergleich zwischen dem Galerkinverfahren und dem Verfahren des minimalen  Residuums im Zusammenhang mit der Reduzierte-Basis-Methode.
    64. Simon, D. (2013). Algorithmen der gitterfreien Kollokation durch radiale Basisfunktionen.
    65. Stein, A. (2013). Limit Pricing als extensives Spiel mit sequentiellen Gleichgewichten [Bachelor Thesis].
    66. Steinwart, I. (2013). Some Remarks on the Statistical Analysis of SVMs and Related Methods. In B. Schölkopf, Z. Luo, & V. Vovk (Eds.), Empirical Inference -- Festschrift in Honor of Vladimir N. Vapnik (pp. 25–36). Springer. https://doi.org/10.1007/978-3-642-41136-6
    67. Strecker, T. (2013). Simulation and Model Reduction of a Skeletal Muscle Fibre System.
    68. Turek, S., & Göddeke, D. (2013). Hardware-oriented Numerics for PDE. In B. Engquist, T. Chan, W. J. Cook, E. Hairer, J. Hastad, A. Iserles, H. P. Langtangen, C. Le Bris, P. L. Lions, C. Lubich, A. J. Majda, J. R. McLaughlin, R. M. Nieminen, J. T. Oden, P. Souganidis, & A. Tveito (Eds.), Encyclopedia of Applied and Computational Mathematics. Springer.
    69. Veenman, J., & Scherer, C. W. (2013). Stability analysis with integral Quadratic constraints: A dissipativity based proof. 52nd IEEE Conf. Decision and Control, 3770–3775. https://doi.org/10.1109/CDC.2013.6760464
    70. Wirth, J. (2013). Thermo-elasticity for anisotropic media in higher dimensions. In Progress in partial differential equations (Vol. 44, pp. 367--407). Springer, Cham. https://doi.org/10.1007/978-3-319-00125-8_17
    71. Wirtz, D., & Haasdonk, B. (2013). An Improved Vectorial Kernel Orthogonal Greedy Algorithm. Dolomites Research Notes on Approximation, 6, 83–100. http://drna.di.univr.it/papers/2013/WirtzHaasdonk.2013.VKO.pdf
    72. Wirtz, D., & Haasdonk, B. (2013). A Vectorial Kernel Orthogonal Greedy Algorithm. Dolomites Res. Notes Approx., 6, 83--100. http://drna.padovauniversitypress.it/system/files/papers/WirtzHaasdonk-2013-VKO.pdf
    73. Wolf, J.-P., & Ganser, M. (2013). Modelling and Simulation of Lithium-Ion Batteries.
    74. Yannou, B., Cluzel, F., & Dihlmann, M. (2013). Evolutionary and interactive sketching tool for innovative car shape  design. Machanics & Industry, 14, 1–22.
  13. 2012

    1. Feistauer, M., & Sändig, A.-M. (2012). Graded mesh refinement and error estimates of higher order for DGFE  solutions of elliptic boundary value problems in polygons. Numerical Methods for Partial Differential Equations, 28(4), Article 4. https://doi.org/10.1002/num.20668
To the top of the page