Direkt zu:
Einen ersten Eindruck über die vielfältigen Publikationen der Forschenden des Fachbereichs, nicht nur in begutachteten Fachzeitschriften, gibt die folgende Übersicht exemplarisch für den Zeitraum ab 2017. Einen detaillerteren, evtl. vollständigeren und themenspezifischeren Eindruck vermitteln die Seiten der einzelnen Institute, Arbeitsgruppen und koordinierten Forschungsprogramme.
2025
- Barth, A., & Stein, A. (2025). A stochastic transport problem with Lévy noise: Fully discrete numerical approximation. Mathematics and Computers in Simulation, 227, 347–370. https://doi.org/10.1016/j.matcom.2024.07.036
2024
- "Knobloch, P., "Kuzmin, D., & "Jha, A. (2024). Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations (P. "Knobloch, D. "Kuzmin, & A. "Jha, Hrsg.).
- Albişoru, A. F., Kohr, M., Papuc, I., & Wendland, W. L. (2024). On some Robin–transmission problems for the Brinkman system and a Navier–Stokes type system. Math. Meth. Appl. Sci., 1–28. https://doi.org/10.1002/mma.10170
- Alkämper, M., Magiera, J., & Rohde, C. (2024). An Interface-Preserving Moving Mesh in Multiple Space Dimensions. ACM Trans. Math. Softw., 50(1), Article 1. https://doi.org/10.1145/3630000
- Beschle, C., & Barth, A. (2024). Complexity analysis of quasi continuous level Monte Carlo. ESAIM: Mathematical Modelling and Numerical Analysis. https://doi.org/10.1051/m2an/2024039
- Beschle, C. A., & Barth, A. (2024). Quasi continuous level Monte Carlo for random elliptic PDEs. In Hinrichs, A., Kritzer, P., Pillichshammer, F. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2022 (Bd. 460, S. 3–31). Springer Proceedings in Mathematics & Statistics. https://doi.org/10.1007/978-3-031-59762-6_1
- Bondanza, M., Nottoli, T., Nottoli, M., Cupellini, L., Lipparini, F., & Mennucci, B. (2024). The OpenMMPol library for polarizable QM/MM calculations of properties and dynamics. The Journal of Chemical Physics, 160(13), Article 13. https://doi.org/10.1063/5.0198251
- Braun, A., Kohler, M., Langer, S., & Walk, H. (2024). Convergence rates for shallow neural networks learned by gradient descent. Bernoulli, 30(1), Article 1. https://doi.org/10.3150/23-bej1605
- Buchfink, P., Glas, S., Haasdonk, B., & Unger, B. (2024). Model reduction on manifolds: A differential geometric framework (2024 Physica D, Hrsg.). https://arxiv.org/abs/2312.01963
- Claeys, X., Hassan, M., & Stamm, B. (2024). Continuity estimates for Riesz potentials on polygonal boundaries. Partial Differential Equations and Applications. https://doi.org/10.1007/s42985-024-00280-4
- Corso, T. C., Hassan, M., Jha, A., & Stamm, B. (2024). An $L^2$-maximum principle for circular arcs on the disk.
- Döppel, F., Wenzel, T., Herkert, R., Haasdonk, B., & Votsmeier, M. (2024). Goal‐Oriented Two‐Layered Kernel Models as Automated Surrogates for Surface Kinetics in Reactor Simulations. Chemie Ingenieur Technik, 96(6), Article 6. https://doi.org/10.1002/cite.202300178
- Ghosh, T., Bringedal, C., Rohde, C., & Helmig, R. (2024). A phase-field approach to model evaporation from porous media: Modeling and upscaling. https://arxiv.org/abs/2112.13104
- Giannoulis, I., Schmidt, B., & Schneider, G. (2024). NLS approximation for a scalar FPUT system on a 2D square lattice with a cubic nonlinearity. J. Math. Anal. Appl., 540(2), Article 2. https://doi.org/10.1016/j.jmaa.2024.128625
- Hammer, M., Wenzel, T., Santin, G., Meszaros-Beller, L., Little, J. P., Haasdonk, B., & Schmitt, S. (2024). A new method to design energy-conserving surrogate models for the coupled, nonlinear responses of intervertebral discs. Biomechanics and Modeling in Mechanobiology, 23(3), Article 3. https://doi.org/10.1007/s10237-023-01804-4
- Herkert, R., Buchfink, P., Wenzel, T., Haasdonk, B., Toktaliev, P., & Iliev, O. (2024). Greedy Kernel Methods for Approximating Breakthrough Curves for Reactive Flow from 3D Porous Geometry Data. Mathematics, 12(13), Article 13. https://doi.org/10.3390/math12132111
- Herkert, R. R. (2024). Replication Code for: Greedy Kernel Methods for Approximating Breakthrough Curves for Reactive Flow from 3D Porous Geometry Data. https://doi.org/10.18419/darus-4227
- Homs-Pons, C., Lautenschlager, R., Schmid, L., Ernst, J., Göddeke, D., Röhrle, O., & Schulte, M. (2024). Coupled Simulation and Parameter Inversion for Neural System and Electrophysiological Muscle Models. GAMM-Mitteilungen. https://doi.org/10.1002/gamm.202370009
- Horsch, M., Chiacchiera, S., Todorov, I., Correia, A., Dey, A., Konchakova, N., Scholze, S., Stephan, S., Tøndel, K., Sarkar, A., Karray, M. H., Al Machot, F., & Schembera, B. (2024). Exploration of core concepts required for mid-and domain-level ontology development to facilitate explainable-AI-readiness of data and models.
- Hsiao, G. C., Sánchez-Vizuet, T., & Wendland, W. L. (2024). Boundary-field formulation for transient electromagnetic scattering by dielectric scatterers and coated conductors. In SIAM J. Math. Analysis, to appear. https://doi.org/10.48550/arXiv.2406.05367
- Huber, F., Bürkner, P.-C., Göddeke, D., & Schulte, M. (2024). Knowledge-based modeling of simulation behavior for Bayesian optimization. Computational Mechanics, 74(1), Article 1. https://doi.org/10.1007/s00466-023-02427-3
- Huber, F., Bürkner, P.-C., Göddeke, D., & Schulte, M. (2024). Knowledge-based modeling of simulation behavior for Bayesian optimization. Computational Mechanics. https://doi.org/10.1007/s00466-023-02427-3
- Hörl, M., & Rohde, C. (2024). Rigorous Derivation of Discrete Fracture Models for Darcy Flow in the Limit of Vanishing Aperture. Netw. Heterog. Media, 19(1), Article 1. https://doi.org/10.3934/nhm.2024006
- Jha, A. (2024). Residual-Based a Posteriori Error Estimators for Algebraic Stabilizations. Applied Mathematics Letters, 157, 109192. https://doi.org/10.1016/j.aml.2024.109192
- Karabash, I. M., Lienstromberg, C., & Velázquez, J. J. L. (2024). Multi-parameter Hopf bifurcations of rimming flows. https://doi.org/10.48550/arXiv.2406.11690
- Kharitenko, A., & Scherer, C. W. (2024). On the exactness of a stability test for Lur’e systems with slope-restricted nonlinearities. IEEE Transactions on Automatic Control. https://doi.org/10.1109/TAC.2024.3362859
- Kohr, M., Nistor, V., & Wendland, W. L. (2024). The Stokes operator on manifolds with cylindrical ends. Journal of Differential Equations, 407, Article 407. https://doi.org/10.1016/j.jde.2024.06.017
- Lindgren, E. B., Avis, H., Miller, A., Stamm, B., Besley, E., & Stace, A. J. (2024). The significance of multipole interactions for the stability of regular structures composed from charged particles. Journal of Colloid and Interface Science, 663, 458–466. https://doi.org/10.1016/j.jcis.2024.02.146
- Lukácová-Medvid’ová, M., & Rohde, C. (2024). Mathematical Challenges for the Theory of Hyperbolic Balance Laws in Fluid Mechanics: Complexity, Scales, Randomness. In Accepted for publication in Jahresber. Dtsch. Math.-Ver.
- Lukácová-Medvid’ová, M., & Rohde, C. (2024). Mathematical Challenges for the Theory of Hyperbolic Balance Laws in Fluid Mechanics: Complexity, Scales, Randomness.
- Magiera, J., & Rohde, C. (2024). A Multiscale Method for Two-Component, Two-Phase Flow with a Neural Network Surrogate. Communications on Applied Mathematics and Computation. https://doi.org/10.1007/s42967-023-00349-8
- Maier, B., Göddeke, D., Huber, F., Klotz, T., Röhrle, O., & Schulte, M. (2024). OpenDiHu: An Efficient and Scalable Framework for Biophysical Simulations of the Neuromuscular System. Journal of Computational Science, 79(102291), Article 102291. https://doi.org/10.1016/j.jocs.2024.102291
- Maier, B., Göddeke, D., Huber, F., Klotz, T., Röhrle, O., & Schulte, M. (2024). OpenDiHu: An Efficient and Scalable Framework for Biophysical Simulations of the Neuromuscular System. Journal of Computational Science, 79. https://doi.org/10.1016/j.jocs.2024.102291
- Meijer, T. J., Holicki, T., Eijnden, S. J. A. M. van den, Scherer, C. W., & Heemels, W. P. M. H. (2024). The Non-Strict Projection Lemma. IEEE Transactions on Automatic Control, 1–8. https://doi.org/10.1109/TAC.2024.3371374
- Mel’nyk, T. A., & Durante, T. (2024). Spectral problems with perturbed Steklov conditions in thick junctions with branched structure. Applicable Analysis, 1–26. https://doi.org/10.1080/00036811.2024.2322644
- Mel’nyk, T., & Rohde, C. (2024). Asymptotic expansion for convection-dominated transport in a thin graph-like junction. Analysis and Applications, 22 (05), 833–879. https://doi.org/10.1142/S0219530524500040
- Mel’nyk, T., & Rohde, C. (2024). Asymptotic approximations for semilinear parabolic convection-dominated transport problems in thin graph-like networks. J. Math. Anal. Appl., 529(1), Article 1. https://doi.org/10.1016/j.jmaa.2023.127587
- Mel’nyk, T., & Rohde, C. (2024). Reduced-dimensional modelling for nonlinear convection-dominated flow in cylindric domains. Nonlinear Differ. Equ. Appl., 31:105. https://doi.org/10.1007/s00030-024-00997-6
- Mel’nyk, T., & Rohde, C. (2024). Puiseux asymptotic expansions for convection-dominated transport problems in thin graph-like networks: strong boundary interactions. Asymptotic Analysis, 137, 27–52. https://doi.org/10.3233/ASY-231876
- Miao, Y., Rohde, C., & Tang, H. (2024). Well-posedness for a stochastic Camassa-Holm type equation with higher order nonlinearities. Stoch. Partial Differ. Equ. Anal. Comput., 12(1), Article 1. https://doi.org/10.1007/s40072-023-00291-z
- Nottoli, M., Herbst, M. F., Mikhalev, A., Jha, A., Lipparini, F., & Stamm, B. (2024). ddX: Polarizable continuum solvation from small molecules to proteins. WIREs Computational Molecular Science. https://doi.org/10.1002/wcms.1726
- Nottoli, M., Vanich, E., Cupellini, L., Scalmani, G., Pelosi, C., & Lipparini, F. (2024). Importance of Polarizable Embedding for Computing Optical Rotation: The Case of Camphor in Ethanol. The Journal of Physical Chemistry Letters, 7992–7999. https://doi.org/10.1021/acs.jpclett.4c01550
- Ruan, L., & Rybak, I. (2024). Stokes-Brinkman-Darcy models for coupled fluid-porous systems: derivation, analysis and validation. Appl. Math. Comp. (submitted).
- Schollenberger, T., von Wolff, L., Bringedal, C., Pop, I. S., Rohde, C., & Helmig, R. (2024). Investigation of Different Throat Concepts for Precipitation Processes in Saturated Pore-Network Models. Transport in Porous Media. https://doi.org/10.1007/s11242-024-02125-5
- Strohbeck, P., Discacciati, M., & Rybak, I. (2024). Optimized Schwarz method for the Stokes-Darcy problem with generalized interface conditions. J. Comput. Phys. (submitted).
- Strohbeck, P., & Rybak, I. (2024). Efficient preconditioners for coupled Stokes-Darcy problems with MAC scheme: Spectral analysis and numerical study. J. Sci. Comput. (submitted).
- Wendland, W. L. (2024). On the construction of the Stokes flow in a domain with cylindrical ends. Math. Meth. Appl. Sci., 1–6. https://doi.org/10.1002/mma.10106
- Wenzel, T., Haasdonk, B., Kleikamp, H., Ohlberger, M., & Schindler, F. (2024). Application of Deep Kernel Models for Certified and Adaptive RB-ML-ROM Surrogate Modeling. In I. Lirkov & S. Margenov (Hrsg.), Large-Scale Scientific Computations (S. 117--125). Springer Nature Switzerland.
2023
- Afşer, H., Györfi, L., & Walk, H. (2023). Classification With Repeated Observations. IEEE Signal Processing Letters, 30, 1522–1526. https://doi.org/10.1109/LSP.2023.3326057
- Arridge, S. R., Burger, M., Hahn, B., & Quinto, E. T. (2023). Tomographic Inverse Problems: Mathematical Challenges and Novel Applications. Oberwolfach Reports, 20(2), Article 2. https://doi.org/10.4171/owr/2023/21
- Bamer, F., Ebrahem, F., Markert, B., & Stamm, B. (2023). Molecular Mechanics of Disordered Solids. Archives of Computational Methods in Engineering, 30(3), Article 3. https://doi.org/10.1007/s11831-022-09861-1
- Berberich, J., Scherer, C. W., & Allgower, F. (2023). Combining Prior Knowledge and Data for Robust Controller Design. IEEE Transactions on Automatic Control, 68(8), Article 8. https://doi.org/10.1109/tac.2022.3209342
- Beschle, C. A., & Barth, A. (2023). Quasi continuous level Monte Carlo for random elliptic PDEs.
- Brehmer, P., Herbst, M. F., Wessel, S., Rizzi, M., & Stamm, B. (2023). Reduced basis surrogates for quantum spin systems based on tensor networks. Physical Review E. https://doi.org/10.1103/PhysRevE.108.025306
- Brennenstuhl, M., Otto, R., Schembera, B., & Eicker, U. (2023). Optimized Dimensioning and Economic Assessment of Decentralized Hybrid Small Wind and PV Power Systems for Residential Buildings. https://www.researchsquare.com/article/rs-3677621/latest.pdf
- Buchfink, P., Glas, S., & Haasdonk, B. (2023). Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds. https://arxiv.org/abs/2312.00724
- Burbulla, S., Formaggia, L., Rohde, C., & Scotti, A. (2023). Modeling fracture propagation in poro-elastic media combining phase-field and discrete fracture models. Comput. Methods Appl. Mech. Engrg., 403. https://doi.org/10.1016/j.cma.2022.115699
- Burbulla, S., Hörl, M., & Rohde, C. (2023). Flow in Porous Media with Fractures of Varying Aperture. SIAM J. Sci. Comput, 45(4), Article 4. https://doi.org/10.1137/22M1510406
- Cancès, E., Herbst, M. F., Kemlin, G., Levitt, A., & Stamm, B. (2023). Numerical stability and efficiency of response property calculations in density functional theory. Letters in Mathematical Physics. https://doi.org/10.1007/s11005-023-01645-3
- Cancès, E., Herbst, M. F., Kemlin, G., Levitt, A., & Stamm, B. (2023). Numerical stability and efficiency of response property calculations in density functional theory. Letters in Mathematical Physics, 113(1), Article 1. https://doi.org/10.1007/s11005-023-01645-3
- Cerejeiras, P., Ferreira, M., Kähler, U., & Wirth, J. (2023). Global Operator Calculus on Spin Groups. Journal of Fourier Analysis and Applications, 29(3), Article 3. https://doi.org/10.1007/s00041-023-10015-5
- Dippon, J., Gwinner, J., Khan, A. A., & Sama, M. (2023). A new regularized stochastic approximation framework for stochastic inverse problems. Nonlinear Anal. Real World Appl., 73, Paper No. 103869, 29. https://doi.org/10.1016/j.nonrwa.2023.103869
- Dusson, G., Sigal, I. M., & Stamm, B. (2023). Analysis of the Feshbach-Schur method for the Fourier spectral discretizations of Schrödinger operators. Mathematics of Computation, 92(340), Article 340. https://doi.org/10.1090/mcom/3774
- Eggenweiler, E., Nickl, J., & Rybak, I. (2023). Justification of generalized interface conditions for Stokes-Darcy problems. In E. Franck, J. Fuhrmann, V. Michel-Dansac, & L. Navoret (Hrsg.), Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems (S. 275–283). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-40864-9_22
- Eggenweiler, E., & Rybak, I. (2023). Higher-order coupling conditions for arbitrary flows in Stokes-Darcy systems. J. Fluid Mech. (submitted).
- Fukuizumi, R., Gao, Y., Schneider, G., & Takahashi, M. (2023). Pattern formation in 2D stochastic anisotropic Swift-Hohenberg equation. Interdiscip. Inform. Sci., 29(1), Article 1. https://doi.org/10.4036/iis.2023.a.03
- Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations. SIAM J. Sci. Comput., 45(1), Article 1. https://doi.org/10.1137/21M1415005
- Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Consistent and Asymptotic-Preserving Finite-Volume Robin Transmission Conditions for Singularly Perturbed Elliptic Equations. In S. C. Brenner, E. Chung, A. Klawonn, F. Kwok, J. Xu, & J. Zou (Hrsg.), Domain Decomposition Methods in Science and Engineering XXVI (S. 443--450). Springer International Publishing.
- Gladbach, P., Jansen, J., & Lienstromberg, C. (2023). Non-Newtonian thin-film equations: global existence of solutions, gradient-flow structure and guaranteed lift-off. https://doi.org/10.48550/ARXIV.2301.10300
- Gramlich, D., Holicki, T., Scherer, C. W., & Ebenbauer, C. (2023). A Structure Exploiting SDP Solver for Robust Controller Synthesis. IEEE Control Syst. Lett., 7, 1831–1836. https://doi.org/10.1109/LCSYS.2023.3277314
- Gramlich, D., Pauli, P., Scherer, C. W., Allgöwer, F., & Ebenbauer, C. (2023). Convolutional Neural Networks as 2-D systems. https://doi.org/10.48550/ARXIV.2303.03042
- Gramlich, D., Scherer, C. W., Häring, H., & Ebenbauer, C. (2023). Synthesis of constrained robust feedback policies and model predictive control. https://doi.org/10.48550/ARXIV.2310.11404
- Griesemer, M., & Hofacker, M. (2023). On the weakness of short-range interactions in Fermi gases. Lett. Math. Phys., 113(1), Article 1. https://doi.org/10.1007/s11005-022-01624-0
- Györfi, L., Linder, T., & Walk, H. (2023). Lossless Transformations and Excess Risk Bounds in Statistical Inference. Entropy, 25(10), Article 10. https://doi.org/10.3390/e25101394
- Haas, T., de Rijk, B., & Schneider, G. (2023). Validity of Whitham’s modulation equations for dissipative systems with a conservation law: phase dynamics in a generalized Ginzburg-Landau system. Indiana Univ. Math. J., 72(1), Article 1. https://doi.org/10.1512/iumj.2023.72.9297
- Haasdonk, B., Kleikamp, H., Ohlberger, M., Schindler, F., & Wenzel, T. (2023). A New Certified Hierarchical and Adaptive RB-ML-ROM Surrogate Model for Parametrized PDEs. SIAM Journal on Scientific Computing, 45(3), Article 3. https://doi.org/10.1137/22m1493318
- Hahn, B., & Wirth, B. (2023). Convex reconstruction of moving particles with inexact motion model. PAMM, 23(2), Article 2. https://doi.org/10.1002/pamm.202300054
- Hahn, B. N., Quinto, E. T., & Rigaud, G. (2023). Foreword to special issue of Inverse Problems on modern challenges in imaging. Inverse Problems, 39(3), Article 3. https://doi.org/10.1088/1361-6420/acb569
- Hahn, B. N., Rigaud, G., & Schmähl, R. (2023). A class of regularizations based on nonlinear isotropic diffusion for inverse problems. IMA Journal of Numerical Analysis. https://doi.org/10.1093/imanum/drad002
- Hewing, L., Gramlich, D., Verhoek, C., Polonio, R., Veenman, J., Ardura, C., Tóth, R., Ebenbauer, C., Scherer, C., & Preda, V. (2023, Juli). Enhancing the Guidance, Navigation and Control of Autonomous Parafoils using Machine Learning Methods. Papers of ESA GNC-ICATT 2023. https://doi.org/10.5270/esa-gnc-icatt-2023-135
- Heß, M., & Schneider, G. (2023). A robust way to justify the derivative NLS approximation. Z. Angew. Math. Phys., 74(6), Article 6. https://doi.org/10.1007/s00033-023-02121-7
- Hilder, B., de Rijk, B., & Schneider, G. (2023). Moving modulating pulse and front solutions of permanent form in a FPU model with nearest and next-to-nearest neighbor interaction. SIAM J. Appl. Dyn. Syst., 22(2), Article 2. https://doi.org/10.1137/22M1502902
- Hilder, B., de Rijk, B., & Schneider, G. (2023). Nonlinear stability of periodic roll solutions in the real Ginzburg-Landau equation against $C_ub^m$-perturbations. Comm. Math. Phys., 400(1), Article 1. https://doi.org/10.1007/s00220-022-04619-z
- Holicki, T., & Scherer, C. W. (2023). IQC based analysis and estimator design for discrete-time systems affected by impulsive uncertainties. Nonlinear Anal. Hybri., 50, 101399. https://doi.org/10.1016/j.nahs.2023.101399
- Holicki, T., & Scherer, C. W. (2023). Input-Output-Data-Enhanced Robust Analysis via Lifting. IFAC-PapersOnLine, 56(2), Article 2. https://doi.org/10.1016/j.ifacol.2023.10.047
- Holzmüller, D., Zaverkin, V., Kästner, J., & Steinwart, I. (2023). A Framework and Benchmark for Deep Batch Active Learning for Regression. Journal of Machine Learning Research, 24(164), Article 164. http://jmlr.org/papers/v24/22-0937.html
- Hornischer, N. (2023). Model Order Reduction with Dynamically Transformed Modes for Electrophysiological Simulations. GAMM Archive for Students.
- Horsch, M. T., Schembera, B., & Preisig, H. A. (2023). European standardization efforts from FAIR toward explainable-AI-ready data documentation in materials modelling. Proc. ICAPAI. https://www.researchgate.net/profile/Martin-Horsch/publication/370285356_European_standardization_efforts_from_FAIR_toward_explainable-AI-ready_data_documentation_in_materials_modelling/links/644934045762c95ac3528653/European-standardization-efforts-from-FAIR-toward-explainable-AI-ready-data-documentation-in-materials-modelling.pdf
- Horsch, M., Schembera, B., & DFG, M. (2023). Epistemic metadata in molecular modelling: First-stage case-study report (10 cases). In Inprodat eV, Kaiserslautern, Tech. Rep (Inprodat eV, Kaiserslautern, Tech. Rep). https://www.researchgate.net/profile/Martin-Horsch/publication/366974408_Epistemic_metadata_in_molecular_modelling_First-stage_case-study_report_10_cases/links/63bc41e4a03100368a6645a6/Epistemic-metadata-in-molecular-modelling-First-stage-case-study-report-10-cases.pdf
- Jansen, J., Lienstromberg, C., & Nik, K. (2023). Long-Time Behavior and Stability for Quasilinear Doubly Degenerate Parabolic Equations of Higher Order. SIAM Journal on Mathematical Analysis, 55(2), Article 2. https://doi.org/10.1137/22M1491137
- Jha, A., John, V., & Knobloch, P. (2023). Adaptive Grids in the Context of Algebraic Stabilizations for Convection-Diffusion-Reaction Equations. SIAM Journal on Scientific Computing, 45(4), Article 4. https://doi.org/10.1137/21m1466360
- Jha, A., Nottoli, M., Mikhalev, A., Quan, C., & Stamm, B. (2023). Linear Scaling Computation of Forces for the Domain-Decomposition Linear Poisson--Boltzmann Method. The Journal of Chemical Physics, 158, 104105. https://doi.org/10.1063/5.0141025
- Keckstein, S., Dippon, J., Hudelist, G., Koninckx, P., Condous, G., Schroeder, L., & Keckstein, J. (2023). Sonomorphologic Changes in Colorectal Deep Endometriosis: The Long-Term Impact of Age and Hormonal Treatment. Ultraschall in der Medizin - European Journal of Ultrasound, EFirst, Article EFirst. https://doi.org/10.1055/a-2209-5653
- Keim, J., Schwarz, A., Chiocchetti, S., Rohde, C., & Beck, A. (2023). A Reinforcement Learning Based Slope Limiter for Two-Dimensional Finite Volume Schemes. https://doi.org/10.13140/RG.2.2.18046.87363
- Keim, J., Munz, C.-D., & Rohde, C. (2023). A Relaxation Model for the Non-Isothermal Navier-Stokes-Korteweg Equations in Confined Domains. J. Comput. Phys., 474, 111830. https://doi.org/10.1016/j.jcp.2022.111830
- Kharitenko, A., & Scherer, C. (2023). Time-varying Zames–Falb multipliers for LTI Systems are superfluous. Automatica, 147, 110577. https://doi.org/10.1016/j.automatica.2022.110577
- Kohr, M., Nistor, V., & Wendland, W. L. (2023). Layer potentials and essentially translation invariant pseudodifferential operators on manifolds with cylindrical ends. In Postpandemic Operator Theory (S. 61–115). Springer-Verlag Berlin. https://doi.org/10.48550/arXiv.2308.06308
- Kröker, I., Oladyshkin, S., & Rybak, I. (2023). Global sensitivity analysis using multi-resolution polynomial chaos expansion for coupled Stokes-Darcy flow problems. Comput. Geosci. https://doi.org/10.1007/s10596-023-10236-z
- Lienstromberg, C., Schiffer, S., & Schubert, R. (2023). A data-driven approach to viscous fluid mechanics: the stationary case. Arch. Ration. Mech. Anal., 247(2), Article 2. https://doi.org/10.1007/s00205-023-01849-w
- Lienstromberg, C., Schiffer, S., & Schubert, R. (2023). A variational approach to the non-newtonian Navier-Stokes equations. https://doi.org/doi:10.48550/ARXIV.2312.03546
- Lienstromberg, C., & Velázquez, J. J. L. (2023). Long-time asymptotics and regularity estimates for weak solutions to a doubly degenerate thin-film equation in the Taylor-Couette setting. arXiv. https://doi.org/10.48550/ARXIV.2203.00075
- Maier, D., Reichel, W., & Schneider, G. (2023). Breather solutions for a semilinear Klein-Gordon equation on a periodic metric graph. J. Math. Anal. Appl., 528(2), Article 2. https://doi.org/10.1016/j.jmaa.2023.127520
- Meijer, T. J., Holicki, T., Eijnden, S. J. A. M. van den, Scherer, C. W., & Heemels, W. P. M. H. (2023). The Non-Strict Projection Lemma. arXiv. https://doi.org/10.48550/ARXIV.2305.08735
- Mel’nyk, T. (2023). Complex Analysis (No. 1; Nummer 1). Springer Cham. https://doi.org/10.1007/978-3-031-39615-1
- Mel’nyk, T. A. (2023). Asymptotic analysis of spectral problems in thick junctions with the branched fractal structure. Mathematical Methods in the Applied Sciences, 46(3), Article 3. https://doi.org/10.1002/mma.8692
- Merkle, R., & Barth, A. (2023). On Properties and Applications of Gaussian Subordinated Lévy Fields. Methodology and Computing in Applied Probability, 25, 62. https://doi.org/10.1007/s11009-023-10033-2
- Miller, C. T., Gray, W. G., Kees, C. E., Rybak, I., & Shepherd, B. J. (2023). Correction to: Modelling Sediment Transport in Three-Phase Surface Water Systems. J. Hydraul. Res., 61, 168–171. https://doi.org/10.1080/00221686.2022.2107580
- Mohammadi, F., Eggenweiler, E., Flemisch, B., Oladyshkin, S., Rybak, I., Schneider, M., & Weishaupt, K. (2023). A Surrogate-Assisted Uncertainty-Aware Bayesian Validation Framework and its Application to Coupling Free Flow and Porous-Medium Flow. Comput. Geosci. https://doi.org/10.1007/s10596-023-10228-z
- Morato, M. M., Holicki, T., & Scherer, C. W. (2023). Stabilizing Model Predictive Control Synthesis using Integral Quadratic Constraints and Full-Block Multipliers. Int. J. Robust Nonlin. https://doi.org/10.1002/rnc.6952
- Nagy, P.-A., & Semmelmann, U. (2023). Eigenvalue estimates for 3-Sasaki structures.
- Nottoli, M., Bondanza, M., Mazzeo, P., Cupellini, L., Curutchet, C., Loco, D., Lagardère, L., Piquemal, J., Mennucci, B., & Lipparini, F. (2023). QM/AMOEBA description of properties and dynamics of embedded molecules. WIREs Computational Molecular Science, 13(6), Article 6. https://doi.org/10.1002/wcms.1674
- Pelinovsky, D., & Schneider, G. (2023). KP-II approximation for a scalar Fermi-Pasta-Ul system on a 2D square lattice. SIAM J. Appl. Math., 83(1), Article 1. https://doi.org/10.1137/22M1509369
- Pes, F., Polack, É., Mazzeo, P., Dusson, G., Stamm, B., & Lipparini, F. (2023). A Quasi Time-Reversible Scheme Based on Density Matrix Extrapolation on the Grassmann Manifold for Born–Oppenheimer Molecular Dynamics. The Journal of Physical Chemistry Letters, 9720--9726. https://doi.org/10.1021/acs.jpclett.3c02098
- Ruan, L., & Rybak, I. (2023). Stokes-Brinkman-Darcy models for coupled free-flow and porous-medium systems. In E. Franck, J. Fuhrmann, V. Michel-Dansac, & L. Navoret (Hrsg.), Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems (S. 365–373). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-40864-9_31
- Rösinger, C. A., & Scherer, C. W. (2023). Gain-Scheduling Controller Synthesis for Networked Systems with Full Block Scalings. https://doi.org/10.1109/TAC.2023.3329851
- Rösinger, C. A., & Scherer, C. W. (2023). Gain-Scheduling Controller Synthesis for Nested Systems With Full Block Scalings. IEEE Transactions on Automatic Control, 1–16. https://doi.org/10.1109/TAC.2023.3329851
- Santin, G., Wenzel, T., & Haasdonk, B. (2023). On the optimality of target-data-dependent kernel greedy interpolation in Sobolev Reproducing Kernel Hilbert Spaces. https://arxiv.org/abs/2307.09811
- Schembera, B., Wübbeling, F., Koprucki, T., Biedinger, C., Reidelbach, M., Schmidt, B., Göddeke, D., & Fiedler, J. (2023). Building Ontologies and Knowledge Graphs for Mathematics and its Applications. Proceedings of the Conference on Research Data Infrastructure, 1. https://doi.org/10.52825/cordi.v1i.255
- Scherer, C. W. (2023). Robust Exponential Stability and Invariance Guarantees with General Dynamic O’Shea-Zames-Falb Multipliers. https://doi.org/10.48550/ARXIV.2306.00571
- Scherer, C. W., Ebenbauer, C., & Holicki, T. (2023). Optimization Algorithm Synthesis based on Integral Quadratic Constraints: A Tutorial. https://doi.org/10.48550/ARXIV.2306.00565
- Schwahn, P., Semmelmann, U., & Weingart, G. (2023). Stability of the Non-Symmetric Space $E_7/PSO(8)$.
- Seus, D., Radu, F. A., & Rohde, C. (2023). Towards hybrid two-phase modelling using linear domain decomposition. Numer. Methods Partial Differential Equations, 39(1), Article 1. https://doi.org/10.1002/num.22906
- Strohbeck, P., Eggenweiler, E., & Rybak, I. (2023). A modification of the Beavers-Joseph condition for arbitrary flows to the fluid-porous interface. Transp. Porous Med., 147(3), Article 3. https://doi.org/10.1007/s11242-023-01919-3
- Strohbeck, P., Riethmüller, C., Göddeke, D., & Rybak, I. (2023). Robust and efficient preconditioners for Stokes-Darcy problems. In E. Franck, J. Fuhrmann, V. Michel-Dansac, & L. Navoret (Hrsg.), Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems (S. 375–383). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-40864-9_32
- Taha, F. A., Yan, S., & Bitar, E. (2023). A Distributionally Robust Approach to Regret Optimal Control using the Wasserstein Distance. 2023 62nd IEEE Conference on Decision and Control (CDC), 2768–2775. https://doi.org/10.1109/CDC49753.2023.10384311
- Theisen, L., & Stamm, B. (2023). A Scalable Two-Level Domain Decomposition Eigensolver for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains. https://doi.org/10.48550/arXiv.2311.08757
- Wendland, W. L. (2023). My relation with GAMM (G. Rundbrief, Hrsg.; No. 1). GAMM Rundbrief. https://www.gamm.org/wp-content/uploads/2024/03/GAMM_1-23_web.pdf
- Wenzel, T., Santin, G., & Haasdonk, B. (2023). Analysis of Target Data-Dependent Greedy Kernel Algorithms: Convergence Rates for f -, f · P - and f /P -greedy. Constructive Approximation, 57(1), Article 1. https://doi.org/10.1007/s00365-022-09592-3
- Wenzel, T., Santin, G., & Haasdonk, B. (2023). Stability of convergence rates: Kernel interpolation on non-Lipschitz domains (2024 IMA Journal of Numerical Analysis, 44(3):1-22, Hrsg.). https://doi.org/10.1093/imanum/drae014
- Zaverkin, V., Holzmüller, D., Bonfirraro, L., & Kästner, J. (2023). Transfer learning for chemically accurate interatomic neural network potentials. Phys. Chem. Chem. Phys., 25(7), Article 7. https://doi.org/10.1039/D2CP05793J
2022
- Agullo, E., Altenbernd, M., Anzt, H., Bautista-Gomez, L., Benacchio, T., Bonaventura, L., Bungartz, H.-J., Chatterjee, S., Ciorba, F. M., DeBardeleben, N., Drzisga, D., Eibl, S., Engelmann, C., Gansterer, W. N., Giraud, L., Göddeke, D., Heisig, M., Jézéquel, F., Kohl, N., … Wohlmuth, B. (2022). Resiliency in numerical algorithm design for extreme scale simulations. The International Journal of High Performance ComputingApplications, 36(2), Article 2. https://doi.org/10.1177/10943420211055188
- Assenmacher, O., Bruell, G., & Lienstromberg, C. (2022). Non-Newtonian two-phase thin-film problem: local existence, uniqueness, and stability. Comm. Partial Differential Equations, 47(1), Article 1. https://doi.org/10.1080/03605302.2021.1957929
- Barth, A., & Stein, A. (2022). Numerical analysis for time-dependent advection-diffusion problems with random discontinuous coefficients. ESAIM: M2AN, 56(5), Article 5. https://doi.org/10.1051/m2an/2022054
- Benner, P., Burger, M., Göddeke, D., Görgen, C., Himpe, C., Heiland, J., Koprucki, T., Ohlberger, M., Rave, S., Reiselbach, M., Saak, J., Schöbel, A., Tabelow, K., & Weber, M. (2022). Die mathematische Forschungsdateninitiative in der NFDI: MaRDI (Mathematical Research Data Initiative). GAMM Rundbrief, 2022(1), Article 1.
- Berberich, J., Scherer, C. W., & Allgower, F. (2022). Combining Prior Knowledge and Data for Robust Controller Design. IEEE Transactions on Automatic Control, 1--16. https://doi.org/10.1109/tac.2022.3209342
- Beschle, C. (2022). Uncertainty visualization: Fundamentals and recent developments, code to produce data and visuals used in Section 5. https://doi.org/10.18419/darus-3154
- Beschle, C., & Barth, A. (2022). Uncertainty visualization: Fundamentals and recent developments, code to produce data and visuals used in Section 5. https://doi.org/10.18419/darus-3154
- Beschle, C., & Kovács, B. (2022). Stability and error estimates for non-linear Cahn–Hilliard-type equations on evolving surfaces. Numerische Mathematik, 1--48. https://doi.org/10.1007/s00211-022-01280-5
- Boege, T., Fritze, R., Görgen, C., Hanselman, J., Iglezakis, D., Kastner, L., Koprucki, T., Krause, T., Lehrenfeld, C., Polla, S., Reidelbach, M., Riedel, C., Saak, J., Schembera, B., Tabelow, K., & Weber, M. (2022). Research-Data Management Planning in the German Mathematical Community. arXiv. https://doi.org/10.48550/ARXIV.2211.12071
- Buchfinck, P., Glas, S., & Haasdonk, B. (2022). Optimal Bases for Symplectic Model Order Reduction of Canonizable Linear Hamiltonian Systems.
- Burbulla, S., Dedner, A., Hörl, M., & Rohde, C. (2022). Dune-MMesh: The Dune Grid Module for Moving Interfaces. J. Open Source Softw., 7(74), Article 74. https://doi.org/10.21105/joss.03959
- Burbulla, S., & Rohde, C. (2022). A finite-volume moving-mesh method for two-phase flow in fracturing porous media. J. Comput. Phys., 111031. https://doi.org/10.1016/j.jcp.2022.111031
- Cekić, M., Lefeuvre, T., Moroianu, A., & Semmelmann, U. (2022). Towards Brin’s conjecture on frame flow ergodicity: new progress and perspectives.
- Dusson, G., Sigal, I., & Stamm, B. (2022). Analysis of the Feshbach–Schur method for the Fourier spectral discretizations of Schrödinger operators. Mathematics of Computation, 92(339), Article 339. https://doi.org/10.1090/mcom/3774
- Echterdiek, F., Kitterer, D., Dippon, J., Ott, M., Paul, G., Latus, J., & Schwenger, V. (2022). Outcome of kidney transplantations from ≥65‐year‐old deceased donors with acute kidney injury. Clinical Transplantation, 36(5), Article 5. https://doi.org/10.1111/ctr.14612
- Echterdiek, F., Tilgener, C., Dippon, J., Kitterer, D., Scheder-Bieschin, J., Paul, G., Ott, M., Humke, U., Schwenger, V., & Latus, J. (2022). Impact of the explanting surgeon’s impression of donor arteriosclerosis on outcome of kidney transplantations from donors aged ≥65 years. Langenbeck’s Archives of Surgery, 407(2), Article 2. https://doi.org/10.1007/s00423-021-02383-7
- Eggenweiler, E., Discacciati, M., & Rybak, I. (2022). Analysis of the Stokes-Darcy problem with generalised interface conditions. ESAIM Math. Model. Numer. Anal., 56, 727–742. https://doi.org/10.1051/m2an/2022025
- Eggenweiler, E. (2022). Interface conditions for arbitrary flows in Stokes-Darcy systems : derivation, analysis and validation. Universität Stuttgart. https://doi.org/10.18419/OPUS-12573
- Fiedler, C., Scherer, C. W., & Trimpe, S. (2022, Dezember). Learning Functions and Uncertainty Sets Using Geometrically Constrained Kernel Regression. 61st IEEE Conf. Decision and Control. https://doi.org/10.1109/cdc51059.2022.9993144
- Focks, T., Bamer, F., Markert, B., Wu, Z., & Stamm, B. (2022). Displacement field splitting of defective hexagonal lattices. Physical Review B. https://doi.org/10.1103/PhysRevB.106.014105
- Frank, R. L., Laptev, A., & Weidl, T. (2022). An improved one-dimensional Hardy inequality. J. Math. Sci. (N.Y.), 268(3, Problems in mathematical analysis. No. 118), Article 3, Problems in mathematical analysis. No. 118. https://doi.org/10.1007/s10958-022-06199-8
- Frank, R., Laptev, A., & Weidl, T. (2022). Schrödinger Operators: Eigenvalues and Lieb–Thirring Inequalities. In Cambridge Studies in Advanced Mathematics (S. 512).
- Fukuizumi, R., & Schneider, G. (2022). Interchanging space and time in nonlinear optics modeling and dispersion management models. J. Nonlinear Sci., 32(3), Article 3. https://doi.org/10.1007/s00332-022-09788-8
- Gavrilenko, P., Haasdonk, B., Iliev, O., Ohlberger, M., Schindler, F., Toktaliev, P., Wenzel, T., & Youssef, M. (2022). A Full Order, Reduced Order and Machine Learning Model Pipeline for Efficient Prediction of Reactive Flows. In I. Lirkov & S. Margenov (Hrsg.), Large-Scale Scientific Computing (S. 378--386). Springer International Publishing.
- Gilg, S., Schneider, G., & Uecker, H. (2022). Nonlinear dynamics of modulated waves on graphene like quantum graphs. Math. Nachr., 295(11), Article 11. https://doi.org/10.1002/mana.202100009
- Gramlich, D., Ebenbauer, C., & Scherer, C. W. (2022). Synthesis of Accelerated Gradient Algorithms for Optimization and Saddle Point Problems using Lyapunov functions. Syst. Control Lett., 165. https://arxiv.org/abs/2006.09946
- Gramlich, D., Scherer, C. W., & Ebenbauer, C. (2022). Robust Differential Dynamic Programming. 61st IEEE Conf. Decision and Control. https://doi.org/10.1109/cdc51059.2022.9992569
- Griesemer, M. (2022). Ground states of atoms and molecules in non-relativistic QED. In The Physics and Mathematics of Elliott Lieb (S. 437--450). EMS Press. https://doi.org/10.4171/90-1/18
- Griesemer, M., & Hofacker, M. (2022). From Short-Range to Contact Interactions in Two-dimensional Many-Body Quantum Systems. Annales Henri Poincaré, 23(8), Article 8. https://doi.org/10.1007/s00023-021-01149-7
- Haasdonk, B., Kleikamp, H., Ohlberger, M., Schindler, F., & Wenzel, T. (2022). A new certified hierarchical and adaptive RB-ML-ROM surrogate model for parametrized PDEs. arXiv. https://doi.org/10.48550/ARXIV.2204.13454
- Hahn, B. N., Garrido, M.-L. K., Klingenberg, C., & Warnecke, S. (2022). Using the Navier-Cauchy equation for motion estimation in dynamic imaging. Inverse Problems and Imaging, 16(5), Article 5. https://doi.org/10.3934/ipi.2022018
- Hassan, M., Williamson, C., Baptiste, J., Braun, S., Stace, A. J., Besley, E., & Stamm, B. (2022). Manipulating Interactions between Dielectric Particles with Electric Fields : A General Electrostatic Many-Body Framework. Journal of Chemical Theory and Computation, 18(10), Article 10. https://doi.org/10.1021/acs.jctc.2c00008
- Hilder, B. (2022). Modulating traveling fronts in a dispersive Swift-Hohenberg equation coupled to an additional conservation law. J. Math. Anal. Appl., 513(2), Article 2. https://doi.org/10.1016/j.jmaa.2022.126224
- Hilder, B., & Sharma, U. (2022). Quantitative coarse-graining of Markov chains.
- Holicki, T. (2022). A Complete Analysis and Design Framework for Linear Impulsive and Related Hybrid Systems [University of Stuttgart]. https://doi.org/10.18419/opus-12158
- Holicki, T., & Scherer, C. W. (2022). A Dynamic S-Procedure for Dynamic Uncertainties. IFAC-PapersOnline, 55(25), Article 25. https://doi.org/10.1016/j.ifacol.2022.09.331
- Holicki, T., & Scherer, C. W. (2022). IQC Based Analysis and Estimator Design for Discrete-Time Systems Affected by Impulsive Uncertainties.
- Holicki, T., & Scherer, C. W. (2022). Input-Output-Data-Enhanced Robust Analysis via Lifting.
- Holzmüller, D., & Steinwart, I. (2022). Training two-layer ReLU networks with gradient descent is inconsistent. Journal of Machine Learning Research, 23(181), Article 181. http://jmlr.org/papers/v23/20-830.html
- Hornischer, N. (2022). Model Order Reduction with Transformed Modes for Electrophysiological Simulations [Bathesis].
- Horsch, M. T., & Schembera, B. (2022). Documentation of epistemic metadata by a mid-level ontology of cognitive processes. Proc. JOWO 2022.
- Hsiao, G. C., Sánchez-Vizuet, T., & Wendland, W. L. (2022). A Boundary-Field Formulation for Elastodynamic Scattering. Journal of Elasticity. https://doi.org/10.1007/s10659-022-09964-7
- Hägele, D., Schulz, C., Beschle, C., Booth, H., Butt, M., Barth, A., Deussen, O., & Weiskopf, D. (2022). Uncertainty Visualization: Fundamentals and Recent Developments. it - Information Technology, 64(4–5), Article 4–5. https://doi.org/10.1515/itit-2022-0033
- Hägele, D., Schulz, C., Beschle, C., Booth, H., Butt, M., Barth, A., Deussen, O., & Weiskopf, D. (2022). Uncertainty visualization : Fundamentals and recent developments. Information Technology, 64(4–5), Article 4–5. https://doi.org/10.1515/itit-2022-0033
- Jung, K., Schembera, B., & Gärtner, M. (2022). Best of Both Worlds? Mapping Process Metadata in Digital Humanities and Computational Engineering. Metadata and Semantic Research, 199--205. https://doi.org/10.1007/978-3-030-98876-0_17
- Kharitenko, A., & Scherer, C. W. (2022). On the exactness of a stability test for Lur’e systems with slope-restricted nonlinearities.
- Klink, M. (2022). Time Error Estimators and Adaptive Time-stepping Schemes [Bathesis].
- Klumpp, M., & Schneider, G. (2022). The Schrödinger approximation for the Helmholtz equation if the refractive index is a step function. Wave Motion, 110, Paper No. 102891, 6. https://doi.org/10.1016/j.wavemoti.2022.102891
- Klumpp, M., & Schneider, G. (2022). A note on the validity of the Schrödinger approximation for the Helmholtz equation. J. Appl. Anal., 28(1), Article 1. https://doi.org/10.1515/jaa-2021-2058
- Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2022). On some mixed-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces. JMAA, 516(1, 126464), Article 1, 126464. https://doi.org/10.1016/j.jmaa.2022.126464
- Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2022). Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces. Calc. Var. Partial Differential Equations, 61, Paper No. 198 (2022) 47 pp.
- Lienstromberg, C., Pernas-Casta\ no, T., & Velázquez, J. J. L. (2022). Analysis of a two-fluid Taylor-Couette flow with one non-Newtonian fluid. J. Nonlinear Sci., 32(2), Article 2. https://doi.org/10.1007/s00332-021-09750-0
- Lienstromberg, C., Pernas-Casta\no, T., & Velázquez, J. J. L. (2022). Analysis of a two-fluid Taylor-Couette flow with one non-Newtonian fluid. J. Nonlinear Sci., 32(2), Article 2. https://doi.org/10.1007/s00332-021-09750-0
- Lienstromberg, C., Schiffer, S., & Schubert, R. (2022). A data-driven approach to viscous fluid mechanics -- the stationary case. https://doi.org/10.48550/ARXIV.2207.00324
- Magiera, J., & Rohde, C. (2022). A molecular–continuum multiscale model for inviscid liquid–vapor flow with sharp interfaces. J. Comput. Phys., 111551. https://doi.org/10.1016/j.jcp.2022.111551
- Magiera, J., & Rohde, C. (2022). Analysis and Numerics of Sharp and Diffuse Interface Models for Droplet Dynamics. In K. Schulte, C. Tropea, & B. Weigand (Hrsg.), Droplet Dynamics under Extreme Ambient Conditions. Springer International Publishing. https://doi.org/10.1007/978-3-031-09008-0_4
- Maier, B., Göddeke, D., Huber, F., Klotz, T., Röhrle, O., & Schulte, M. (2022). OpenDiHu: An Efficient and Scalable Framework for Biophysical Simulations of the Neuromuscular System.
- Massa, F., Ostrowski, L., Bassi, F., & Rohde, C. (2022). An artificial Equation of State based Riemann solver for a discontinuous Galerkin discretization of the incompressible Navier–Stokes equations. J. Comput. Phys., 110705. https://doi.org/10.1016/j.jcp.2021.110705
- Mehl, L., Beschle, C., Barth, A., & Bruhn, A. (2022). Replication Data for: An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation. https://doi.org/10.18419/darus-2890
- Mel’nyk, T., & Klevtsovskiy, A. V. (2022). Asymptotic expansion for the solution of a convection-diffusion problem in a thin graph-like junction. Asymptotic Analysis, 130(3–4), Article 3–4. https://doi.org/10.3233/ASY-221761
- Merkle, R., & Barth, A. (2022). Subordinated Gaussian Random Fields in Elliptic Partial Differential Equations. Stoch PDE: Anal Comp. https://doi.org/10.1007/s40072-022-00246-w
- Merkle, R., & Barth, A. (2022). On some distributional properties of subordinated Gaussian random fields. Methodol Comput Appl Probab.
- Merkle, R., & Barth, A. (2022). Multilevel Monte Carlo estimators for elliptic PDEs with Lévy-type diffusion coefficient. BIT Numer Math. https://doi.org/10.1007/s10543-022-00912-4
- Mikhalev, A., Nottoli, M., & Stamm, B. (2022). Linearly scaling computation of ddPCM solvation energy and forces using the fast multipole method. The Journal of Chemical Physics, 157(11), Article 11. https://doi.org/10.1063/5.0104536
- Nitzsche, M., Albers, H., Kluth, T., & Hahn, B. (2022). Compensating model imperfections during image reconstruction via Resesop. International Journal on Magnetic Particle Imaging, Vol 8 No 1 Suppl 1 (2022). https://doi.org/10.18416/IJMPI.2022.2203062
- Nottoli, M., Mikhalev, A., Stamm, B., & Lipparini, F. (2022). Coarse-Graining ddCOSMO through an Interface between Tinker and the ddX Library. The Journal of Physical Chemistry B, 126(43), Article 43. https://doi.org/10.1021/acs.jpcb.2c04579
- Rettberg, J., Wittwar, D., Buchfink, P., Brauchler, A., Ziegler, P., Fehr, J., & Haasdonk, B. (2022). Port-Hamiltonian Fluid-Structure Interaction Modeling and Structure-Preserving Model Order Reduction of a Classical Guitar. https://doi.org/10.48550/arXiv.2203.10061
- Rösinger, C. A., & Scherer, C. W. (2022). Gain-Scheduling Controller Synthesis for Networked Systems with Full Block Scalings.
- Santin, G., Karvonen, T., & Haasdonk, B. (2022). Sampling based approximation of linear functionals in reproducing kernel Hilbert spaces. BIT Numerical Mathematics, 62(1), Article 1. https://doi.org/10.1007/s10543-021-00870-3
- Scherer, C. (2022). Dissipativity and Integral Quadratic Constraints, Tailored computational robustness tests for complex interconnections. IEEE Control Systems Magazine, 42(3), Article 3. https://arxiv.org/abs/2105.07401
- Scherer, C. W. (2022). Dissipativity, Convexity and Tight O\textquotesingleShea-Zames-Falb Multipliers for Safety Guarantees. IFAC-PapersOnLine, 55(30), Article 30. https://doi.org/10.1016/j.ifacol.2022.11.044
- Schneider, G., & Winter, M. (2022). The amplitude system for a simultaneous short-wave Turing and long-wave Hopf instability. Discrete Contin. Dyn. Syst. Ser. S, 15(9), Article 9. https://doi.org/10.3934/dcdss.2021119
- Schneider, G., & Winter, M. (2022). The amplitude system for a imultaneous short-wave Turing and long-wave Hopf instability. Discrete Contin. Dyn. Syst. Ser. S, 15(9), Article 9. https://doi.org/10.3934/dcdss.2021119
- Shuva, S., Buchfink, P., Röhrle, O., & Haasdonk, B. (2022). Reduced Basis Methods for Efficient Simulation of a Rigid Robot Hand Interacting with Soft Tissue. In I. Lirkov & S. Margenov (Hrsg.), Large-Scale Scientific Computing (S. 402--409). Springer International Publishing.
- Stamm, B., & Theisen, L. (2022). A Quasi-Optimal Factorization Preconditioner for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains. SIAM Journal on Numerical Analysis, 60(5), Article 5. https://doi.org/10.1137/21m1456005
- von Wolff, L., & Pop, I. S. (2022). Upscaling of a Cahn–Hilliard Navier–Stokes model with precipitation and dissolution in a thin strip. Journal of Fluid Mechanics, 941, A49--. https://doi.org/DOI: 10.1017/jfm.2022.308
- Wenzel, T., Kurz, M., Beck, A., Santin, G., & Haasdonk, B. (2022). Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows. In I. Lirkov & S. Margenov (Hrsg.), Large-Scale Scientific Computing (S. 410--418). Springer International Publishing.
- Wenzel, T., Santin, G., & Haasdonk, B. (2022). Stability of convergence rates: Kernel interpolation on non-Lipschitz domains. arXiv. https://doi.org/10.48550/ARXIV.2203.12532
- Wenzel, T., Santin, G., & Haasdonk, B. (2022). Analysis of Target Data-Dependent Greedy Kernel Algorithms: Convergence Rates for f-, \$\$f \backslashcdot P\$\$- and f/P-Greedy. Constructive Approximation. https://doi.org/10.1007/s00365-022-09592-3
- Wirth, J., & Sebih, M. E. (2022). On a wave equation with singular dissipation. Mathematische Nachrichten, 295(8), Article 8. https://doi.org/10.1002/mana.202000076
- Zaverkin, V., Holzmüller, D., Schuldt, R., & Kästner, J. (2022). Predicting properties of periodic systems from cluster data: A case study of liquid water. The Journal of Chemical Physics, 156(11), Article 11. https://doi.org/10.1063/5.0078983
- Zaverkin, V., Holzmüller, D., Steinwart, I., & Kästner, J. (2022). Exploring chemical and conformational spaces by batch mode deep active learning. Digital Discovery, 1, 605–620. https://doi.org/10.1039/D₂DD00034B
- Zinßer, M., Braun, B., Helder, T., Magorian Friedlmeier, T., Pieters, B., Heinlein, A., Denk, M., Göddeke, D., & Powalla, M. (2022). Irradiation-dependent topology optimization of metallization grid patterns and variation of contact layer thickness used for latitude-based yield gain of thin-film solar modules. MRS Advances. https://doi.org/10.1557/s43580-022-00321-3
2021
- Wittwar, D., & Haasdonk, B. (o. J.). Convergence rates for matrix P-greedy variants. In Numerical mathematics and advanced applications---ENUMATH 2019 (Bd. 139, S. 1195--1203). Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1\_119
- Alonso-Orán, D., Rohde, C., & Tang, H. (2021). A local-in-time theory for singular SDEs with applications to fluid models with transport noise. J. Nonlinear Sci., 31(6), Article 6. https://doi.org/doi.org/10.1007/s00332-021-09755-9
- Altenbernd, M., Dreier, N.-A., Engwer, C., & Göddeke, D. (2021). Towards Local-Failure Local-Recovery in PDE Frameworks: The Case of Linear Solvers. In T. Kozubek, P. Arbenz, J. Jaros, L. Ríha, J. Sístek, & P. Tichý (Hrsg.), High Performance Computing in Science and Engineering -- HPCSE 2019 (Bd. 12456, S. 17--38). Springer. https://doi.org/10.1007/978-3-030-67077-1_2
- Altmann, K., & Witt, F. (2021). Toric co-Higgs sheaves. Journal of Pure and Applied Algebra, 225(8), Article 8. https://doi.org/10.1016/j.jpaa.2020.106634
- Barth, A., & Merkle, R. (2021). Multilevel Monte Carlo estimators for elliptic PDEs with Lévy-type diffusion coefficient. ArXiv e-prints, arXiv:2108.05604 math.NA.
- Beck, A., Dürrwächter, J., Kuhn, T., Meyer, F., Munz, C.-D., & Rohde, C. (2021). Uncertainty Quantification in High Performance Computational Fluid Dynamics. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Hrsg.), High Performance Computing in Science and Engineering ’19 (S. 355--371). Springer International Publishing.
- Benacchio, T., Bonaventura, L., Altenbernd, M., Cantwell, C. D., Düben, P. D., Gillard, M., Giraud, L., Göddeke, D., Raffin, E., Teranishi, K., & Wedi, N. (2021). Resilience and fault tolerance in high-performance computing for numerical weather and climate prediction. The International Journal of High Performance Computing Applications, 35(4), Article 4. https://doi.org/10.1177/1094342021990433
- Benguria, R. D., Cianchi, A., Maz’ya, V. G., Davies, E. B., Takhtajan, L. A., Tretter, C., Yafaev, D., & und weitere. (2021). Partial differential equations, spectral theory, and mathematical physics—the Ari Laptev anniversary volume. In P. Exner, R. L. Frank, F. Gesztesy, H. Holden, & T. Weidl (Hrsg.), EMS Series of Congress Reports. EMS Press, Berlin. https://doi.org/10.4171/ECR/18
- Berrett, T. B., Gyorfi, L., & Walk, H. (2021). Strongly universally consistent nonparametric regression and classification with privatised data. ELECTRONIC JOURNAL OF STATISTICS, 15(1), Article 1. https://doi.org/10.1214/21-EJS1845
- Brencher, L., & Barth, A. (2021). Stochastic conservation laws with discontinuous flux functions: The multidimensional case.
- Brencher, L., & Barth, A. (2021). Scalar conservation laws with stochastic discontinuous flux function. ArXiv e-prints, arXiv:2107.00549 math.NA.
- Buchfink, P., Glas, S., & Haasdonk, B. (2021). Symplectic Model Reduction of Hamiltonian Systems on Nonlinear Manifolds. https://doi.org/10.48550/arXiv.2112.10815
- Buchfink, P., & Haasdonk, B. (2021). Experimental Comparison of Symplectic and Non-symplectic Model Order Reduction an Uncertainty Quantification Problem. In F. J. Vermolen & C. Vuik (Hrsg.), Numerical Mathematics and Advanced Applications ENUMATH 2019 (Bd. 139). Springer International Publishing. https://doi.org/10.1007/978-3-030-55874-1
- Cleyton, R., Moroianu, A., & Semmelmann, U. (2021). Metric connections with parallel skew-symmetric torsion. Adv. Math., 378, 107519, 50. https://doi.org/10.1016/j.aim.2020.107519
- de Rijk, B., & Sandstede, B. (2021). Diffusive stability against nonlocalized perturbations of planar wave trains in reaction-diffusion systems. J. Differential Equations, 274, 1223--1261. https://doi.org/10.1016/j.jde.2020.10.027
- de Rijk, B., & Schneider, G. (2021). Global existence and decay in multi-component reaction-diffusion-advection systems with different velocities: oscillations in time and frequency. NoDEA, Nonlinear Differ. Equ. Appl., 28(1), Article 1.
- Düll, W.-P. (2021). Validity of the nonlinear Schrödinger approximation for the two-dimensional water wave problem with and without surface tension in the arc length formulation. Arch. Ration. Mech. Anal., 239(2), Article 2. https://doi.org/10.1007/s00205-020-01586-4
- Dürrwächter, J., Meyer, F., Kuhn, T., Beck, A., Munz, C.-D., & Rohde, C. (2021). A high-order stochastic Galerkin code for the compressible Euler and Navier-Stokes equations. Computers & Fluids, 228, 1850044, 20. https://doi.org/10.1016/j.compfluid.2021.105039
- Echterdiek, F., Kitterer, D., Dippon, J., Paul, G., Schwenger, V., & Latus, J. (2021). Impact of cardiopulmonary resuscitation on outcome of kidney transplantations from braindead donors aged ≥65 years. Clin Transplant., 2021 Aug 13:, e14452. https://doi.org/10.1111/ctr.14452
- Eggenweiler, E., & Rybak, I. (2021). Effective coupling conditions for arbitrary flows in Stokes-Darcy systems. Multiscale Model. Simul., 19, 731–757. https://doi.org/10.1137/20M1346638
- Ehring, T., & Haasdonk, B. (2021). Greedy sampling and approximation for realizing feedback control for high dimensional nonlinear systems.
- Ehring, T., & Haasdonk, B. (2021). Feedback control for a coupled soft tissue system by kernel surrogates. Coupled Problems 2021, IS11, Article IS11. https://doi.org/10.23967/coupled.2021.026
- Fiedler, C., Scherer, C. W., & Trimpe, S. (2021). Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8), Article 8. https://ojs.aaai.org/index.php/AAAI/article/view/16912
- Fiedler, C., Scherer, C. W., & Trimpe, S. (2021). Learning-enhanced robust controller synthesis with rigorous statistical and control-theoretic guarantees. 60th IEEE Conf. Decision and Control, 5122–5129. https://arxiv.org/abs/2105.03397
- Freiberg, U., & Kohl, S. (2021). Box dimension of fractal attractors and their numerical computation. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 95. https://doi.org/10.1016/j.cnsns.2020.105615
- Gander, M., Lunowa, S., & Rohde, C. (2021). Consistent and asymptotic-preserving finite-volume domain decomposition methods for singularly perturbed elliptic equations. Domain Decomposition Methods in Science and Engineering XXVI. http://www.uhasselt.be/Documents/CMAT/Preprints/2021/UP2103.pdf
- Geck, M. (2021). Generalised Gelfand-Graev representations in bad characteristic? Transformation Groups, 26(1), Article 1. https://doi.org/10.1007/s00031-020-09575-3
- Giesselmann, J., Meyer, F., & Rohde, C. (2021). Error control for statistical solutions of hyperbolic systems of conservation laws. Calcolo, 58(2), Article 2. https://doi.org/10.1007/s10092-021-00417-6
- Girardi, G., & Wirth, J. (2021). Decay Estimates for a Klein-Gordon Model with Time-Periodic Coeffizients. In M. Cicognani, D. del Santo, A. Parmeggiani, & M. Reissig (Hrsg.), Anomalies in Partial Differential Equations (Bd. 43). Springer. https://doi.org/10.1007/978-3-030-61346-4_14
- Haasdonk, B., Hamzi, B., Santin, G., & Wittwar, D. (2021). Kernel methods for center manifold approximation and a weak data-based version of the center manifold theorem. Phys. D, 427, Paper No. 133007, 14. https://doi.org/10.1016/j.physd.2021.133007
- Haasdonk, B. (2021). Model Order Reduction, Applications, MOR Software (D. Gruyter, Hrsg.; Bd. 3). De Gruyter. https://doi.org/10.1515/9783110499001
- Haasdonk, B., Ohlberger, M., & Schindler, F. (2021). An adaptive model hierarchy for data-augmented training of kernel models for reactive flow. arXiv. https://doi.org/10.48550/ARXIV.2110.12388
- Haasdonk, B., Wenzel, T., Santin, G., & Schmitt, S. (2021). Biomechanical Surrogate Modelling Using Stabilized Vectorial Greedy Kernel Methods.
- Hahn, B. N. (2021). Motion compensation strategies in tomography. https://doi.org/10.1007/978-3-030-57784-1_3
- Hahn, B. N., Kienle-Garrido, M. L., & Quinto, E. T. (2021). Microlocal properties of dynamic Fourier integral operators. https://doi.org/10.1007/978-3-030-57784-1_4
- Hamm, T., & Steinwart, I. (2021). Adaptive Learning Rates for Support Vector Machines Working on Data with Low Intrinsic Dimension. Ann. Statist.
- Hamm, T., & Steinwart, I. (2021). Intrinsic Dimension Adaptive Partitioning for Kernel Methods. Fakultät für Mathematik und Physik, Universität Stuttgart.
- Hang, H., & Steinwart, I. (2021). Optimal Learning with Anisotropic Gaussian SVMs. Appl. Comput. Harmon. Anal., 55, Article 55. https://doi.org/10.1016/j.acha.2021.06.004
- Hilder, B. (2021). Nonlinear stability of fast invading fronts in a Ginzburg–Landau equation with an additional conservation law. Nonlinearity, 34(8), Article 8. https://doi.org/10.1088/1361-6544/abd612
- Holicki, T., & Scherer, C. W. (2021). Robust Gain-Scheduled Estimation with Dynamic D-Scalings. IEEE Trans. Autom. Control. https://doi.org/10.1109/TAC.2021.3052751
- Holicki, T., & Scherer, C. W. (2021). Algorithm Design and Extremum Control: Convex Synthesis due to Plant Multiplier Commutation. Proc. 60th IEEE Conf. Decision and Control, 3249–3256. https://doi.org/10.1109/CDC45484.2021.9683012
- Holicki, T., Scherer, C. W., & Trimpe, S. (2021). Controller Design via Experimental Exploration with Robustness Guarantees. IEEE Control Syst. Lett., 5(2), Article 2. https://doi.org/10.1109/LCSYS.2020.3004506
- Holicki, T., & Scherer, C. W. (2021). Revisiting and Generalizing the Dual Iteration for Static and Robust Output-Feedback Synthesis. Int. J. Robust Nonlin., 1–33. https://doi.org/10.1002/rnc.5547
- Holzmüller, D., & Pflüger, D. (2021). Fast Sparse Grid Operations Using the Unidirectional Principle: A Generalized and Unified Framework. In H.-J. Bungartz, J. Garcke, & D. Pflüger (Hrsg.), Sparse Grids and Applications - Munich 2018 (S. 69--100). Springer International Publishing.
- Hsiao, G. C., & Wendland, W. L. (2021). On the propagation of acoustic waves in a thermo-electro-magneto-elastic solid. Applicable Analysis, 101 (2022)(0), Article 0. https://doi.org/10.1080/00036811.2021.1986027
- Hsiao, G. C., & Wendland, W. L. (2021). Boundary integral equations. In Applied Mathematical Sciences (Bd. 164, S. xx+783). Springer, Cham. https://doi.org/10.1007/978-3-030-71127-6
- Aufgaben und Lösungen zur Höheren Mathematik 1. (2021). In K. V. Höllig & J. V. Hörner (Hrsg.), Springer eBook Collection (3rd ed. 2021.). https://doi.org/10.1007/978-3-662-63181-2
- Jentsch, T., & Weingart, G. (2021). Jacobi relations on naturally reductive spaces. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 59(1), Article 1. https://doi.org/10.1007/s10455-020-09740-7
- Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2021). Layer potential theory for the anisotropic Stokes system with variable L∞ symmetrically elliptic tensor coefficient. Math. Methods Appl. Sci., 44(12), Article 12. https://doi.org/10.1002/mma.7167
- Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2021). Dirichlet and transmission problems for anisotropic Stokes and Navier-Stokes systems with L∞ tensor coefficient under relaxed ellipticity condition. Discrete Contin. Dyn. Syst., 41(9), Article 9. https://doi.org/10.3934/dcds.2021042
- Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2021). Layer potential theory for the anisotropic Stokes system with variable L∞ symmetrically elliptic tensor coeffici. Math. Methods Appl. Sci., 44(12), Article 12. https://doi.org/10.1002/mma.7167
- Kollross, A. (2021). Polar actions on Damek-Ricci spaces. Differential Geometry and its Applications, 76, 101753. https://doi.org/10.1016/j.difgeo.2021.101753
- Krämer, A., Maier, B., Rau, T., Huber, F., Klotz, T., Ertl, T., Göddeke, D., Mehl, M., Reina, G., & Röhrle, O. (2021). Multi-physics multi-scale HPC simulations of skeletal muscles. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Hrsg.), High Performance Computing in Science and Engineering ’20: Transactions of the High Performance Computing Center, Stuttgart(HLRS) 2020. https://doi.org/10.1007/978-3-030-80602-6_13
- Kühnert, J., Göddeke, D., & Herschel, M. (2021, Juli). Provenance-integrated parameter selection and optimization in numerical simulations. 13th International Workshop on Theory and Practice ofProvenance (TaPP 2021). https://www.usenix.org/conference/tapp2021/presentation/kühnert
- Lang, R. (2021). On the eigenvalues of the non-self-adjoint Robin Laplacian on bounded domains and compact quantum graphs. [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-11428
- Leiteritz, R., Buchfink, P., Haasdonk, B., & Pflüger, D. (2021). Surrogate-data-enriched Physics-Aware Neural Networks.
- Magiera, J. (2021). A Molecular--Continuum Multiscale Solver for Liquid--Vapor Flow. Small Collaboration: Advanced Numerical Methods for Nonlinear Hyperbolic Balance Laws and Their Applications (hybrid meeting), 41. https://doi.org/10.14760/OWR-2021-41
- Magiera, J. (2021). A Molecular--Continuum Multiscale Solver for Liquid--Vapor Flow: Modeling and Numerical Simulation [Ph.D. Thesis]. https://doi.org/10.18419/opus-11797
- Makogin, V., Oesting, M., Rapp, A., & Spodarev, E. (2021). Long range dependence for stable random processes. J. Time Series Anal., 42(2), Article 2. https://doi.org/10.1111/jtsa.12560
- Mehl, L., Beschle, C., Barth, A., & Bruhn, A. (2021). An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation. Proceedings of the International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), 140--152. https://doi.org/10.1007/978-3-030-75549-2_12
- Mel’nyk, T. (2021). Asymptotic approximations for eigenvalues and eigenfunctions of a spectral problem in a thin graph-like junction with a concentrated mass in the node. Analysis and Applications, 19(05), Article 05. https://doi.org/10.1142/S0219530520500219
- Michalowsky, S., Scherer, C., & Ebenbauer, C. (2021). Robust and structure exploiting optimisation algorithms: An integral quadratic constraint approach. International Journal of Control, 94(11), Article 11. https://doi.org/10.1080/00207179.2020.1745286
- Nonnenmacher, M., Reeb, D., & Steinwart, I. (2021). Which Minimizer Does My Neural Network Converge To? In N. Oliver, F. Pérez-Cruz, S. Kramer, J. Read, & J. A. Lozano (Hrsg.), Joint European Conference on Machine Learning and Knowledge Discovery in Databases (S. 87--102). Springer International Publishing. https://doi.org/10.1007/978-3-030-86523-8_6
- Osorno, M., Schirwon, M., Kijanski, N., Sivanesapillai, R., Steeb, H., & Göddeke, D. (2021). A cross-platform, high-performance SPH toolkit for image-based flow simulations on the pore scale of porous media. Computer Physics Communications, 267(108059), Article 108059. https://doi.org/10.1016/j.cpc.2021.108059
- Rohde, C., & Tang, H. (2021). On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena. NoDEA Nonlinear Differential Equations Appl., 28(1), Article 1. https://doi.org/10.1007/s00030-020-00661-9
- Rohde, C., & Tang, H. (2021). On a stochastic Camassa-Holm type equation with higher order nonlinearities. J. Dynam. Differential Equations, 33, 1823–1852. https://doi.org/10.1007/s10884-020-09872-1
- Rohde, C., & Von Wolff, L. (2021). A ternary Cahn–Hilliard–Navier–Stokes model for two-phase flow with precipitation and dissolution. Mathematical Models and Methods in Applied Sciences, 31(01), Article 01. https://doi.org/10.1142/S0218202521500019
- Rybak, I., Schwarzmeier, C., Eggenweiler, E., & Rüde, U. (2021). Validation and calibration of coupled porous-medium and free-flow problems using pore-scale resolved models. Comput. Geosci., 25, 621–635. https://doi.org/10.1007/s10596-020-09994-x
- Rörich, A., Werthmann, T. A., Göddeke, D., & Grasedyck, L. (2021). Bayesian inversion for electromyography using low-rank tensor formats. Inverse Problems, 37(5), Article 5. https://doi.org/10.1088/1361-6420/abd85a
- Santin, G., & Haasdonk, B. (2021). Kernel methods for surrogate modeling. In P. Benner, W. Schilders, S. Grivet-Talocia, A. Quarteroni, G. Rozza, & L. M. Silveira (Hrsg.), Model Order Reduction: Bd. 1: System-and Data-Driven Methods and Algorithms (S. 311–354). de Gruyter.
- Scherer, C., & Ebenbauer, C. (2021). Convex Synthesis of Accelerated Gradient Algorithms. SIAM J. Contr. Optim. (to appear). https://arxiv.org/abs/2102.06520
- Schmalfuss, J., Riethmüller, C., Altenbernd, M., Weishaupt, K., & Göddeke, D. (2021). Partitioned coupling vs. monolithic block-preconditioning approaches for solving Stokes-Darcy systems. Proceedings of the International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS). https://doi.org/10.23967/coupled.2021.043
- Schricker, S., Monje, DC., Dippon, J., Kimmel, M., Alscher, MD., & Schanz, M. (2021). Physician-guided, hybrid genetic testing exerts promising effects on health-related behavior without compromising quality of life. Sci Rep., 2021 Apr 19;11(1), 8494. https://doi.org/10.1038/s41598-021-87821-8
- Stauch, G., Fritz, P., Rokai, R., Sediqi, A., Firooz, H., Voelker, HU., Weinhara, M., Mollin, J., Soudah, B., Dalquen, P., Brinckmann, F., & Dippon, J. (2021). The Importance of Clinical Data for the Diagnosis of Breast Tumours in North Afghanistan. Int. Jounal Breast Cancer, Jul 30;2021, 6625239. https://doi.org/10.1155/2021/6625239
- Steinwart, I., & Fischer, S. (2021). A Closer Look at Covering Number Bounds for Gaussian Kernels. J. Complexity, 62, 101513. https://doi.org/10.1016/j.jco.2020.101513
- Steinwart, I., & Ziegel, J. F. (2021). Strictly proper kernel scores and characteristic kernels on compact spaces. Appl. Comput. Harmon. Anal., 51, 510--542. https://doi.org/10.1016/j.acha.2019.11.005
- Veenman, J., Scherer, C. W., Ardura, C., Bennani, S., Preda, V., & Girouart, B. (2021). IQClab: A new IQC based toolbox for robustness analysis and control design. IFAC-PapersOnline, 54(8), Article 8. https://doi.org/10.1016/j.ifacol.2021.08.583
- von Wolff, L. (2021). The Dune-Phasefield Module release 1.0. DaRUS. https://doi.org/10.18419/darus-1634
- Von Wolff, L., Weinhardt, F., Class, H., Hommel, J., & Rohde, C. (2021). Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling. Transport in Porous Media, 137(2), Article 2. https://doi.org/10.1007/s11242-021-01560-y
- Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability estimation of regular porous structures: a benchmark for comparison of methods. Transp. Porous Med., 138, 1–23. https://doi.org/10.1007/s11242-021-01586-2
- Wenzel, T., Santin, G., & Haasdonk, B. (2021). A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability and uniform point distribution.
- Wenzel, T., Santin, G., & Haasdonk, B. (2021). Universality and Optimality of Structured Deep Kernel Networks. arXiv. https://doi.org/10.48550/ARXIV.2105.07228
- Wenzel, T., Santin, G., & Haasdonk, B. (2021). Analysis of target data-dependent greedy kernel algorithms: Convergence rates for $f$-, $f P$- and $f/P$-greedy. arXiv. https://doi.org/10.48550/ARXIV.2105.07411
- Wenzel, T., Santin, G., & Haasdonk, B. (2021). Analysis of target data-dependent greedy kernel algorithms: Convergence rates for f-, f P- and f/P-greedy. arXiv. https://doi.org/10.48550/ARXIV.2105.07411
- Zaverkin, V., Kästner, J., Holzmüller, D., & Steinwart, I. (2021). Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments. J. Chem. Theory Comput. https://doi.org/10.1021/acs.jctc.1c00527
2020
- Alla, A., Haasdonk, B., & Schmidt, A. (2020). Feedback control of parametrized PDEs via model order reduction and dynamic programming principle. Adv. Comput. Math., 46(1), Article 1. https://doi.org/10.1007/s10444-020-09744-8
- Armiti-Juber, A., & Rohde, C. (2020). On the well-posedness of a nonlinear fourth-order extension of Richards’ equation. J. Math. Anal. Appl., 487(2), Article 2. https://doi.org/10.1016/j.jmaa.2020.124005
- Barberis, M. L., Moroianu, A., & Semmelmann, U. (2020). Generalized vector cross products and Killing forms on negatively curved manifolds. Geom. Dedicata, 205, 113--127. https://doi.org/10.1007/s10711-019-00467-9
- Barreau, M., Scherer, C. W., Gouaisbaut, F., & Seuret, A. (2020). Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis. IFAC World Congress.
- Barth, A., & Merkle, R. (2020). Subordinated Gaussian Random Fields in Elliptic Partial Differential Equations. ArXiv e-prints, arXiv:2011.09311 math.NA.
- Barth, A., & Merkle, R. (2020). Subordinated Gaussian Random Fields. ArXiv e-prints, arXiv:2012.06353 math.PR.
- Bastian, P., Altenbernd, M., Dreier, N.-A., Engwer, C., Fahlke, J., Fritze, R., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., Shegunov, N., & Turek, S. (2020). Exa-Dune - Flexible PDE Solvers, Numerical Methods and Applications. In H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, & W. E. Nagel (Hrsg.), Software for Exascale Computing -- SPPEXA 2016--2019 (S. 225--269). Springer. https://doi.org/10.1007/978-3-030-47956-5_9
- Baumstark, S., Schneider, G., & Schratz, K. (2020). Effective numerical simulation of the Klein-Gordon-Zakharov system in the Zakharov limit. In Mathematics of wave phenomena. Selected papers based on the presentations at the conference, Karlsruhe, Germany, July 23--27, 2018 (S. 37--48). Cham: Birkhäuser.
- Baumstark, S., Schneider, G., Schratz, K., & Zimmermann, D. (2020). Effective slow dynamics models for a class of dispersive systems. J. Dyn. Differ. Equations, 32(4), Article 4.
- Beck, A., Dürrwächter, J., Kuhn, T., Meyer, F., Munz, C.-D., & Rohde, C. (2020). $hp$-Multilevel Monte Carlo methods for uncertainty quantification of compressible flows. SIAM J. Sci. Comput., 42(4), Article 4. https://doi.org/10.1137/18M1210575
- Berberich, J., Koch, A., Scherer, C. W., & Allgöwer, F. (2020). Robust data-driven state-feedback design. 2020 American Control Conference (ACC), 1532–1538. https://doi.org/10.23919/acc45564.2020.9147320
- Berre, I., Boon, W. M., Flemisch, B., Fumagalli, A., Gläser, D., Keilegavlen, E., Scotti, A., Stefansson, I., Tatomir, A., Brenner, K., Burbulla, S., Devloo, P., Duran, O., Favino, M., Hennicker, J., Lee, I.-H., Lipnikov, K., Masson, R., Mosthaf, K., … Zulian, P. (2020). Verification benchmarks for single-phase flow in three-dimensional fractured porous media.
- Bitter, A. (2020). Virtual levels of multi-particle quantum systems and their implications for the Efimov effect [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-11315
- Blanke, S. E., Hahn, B. N., & Wald, A. (2020). Inverse problems with inexact forward operator: iterative regularization and application in dynamic imaging. Inverse Problems, 36(12), Article 12. https://doi.org/10.1088/1361-6420/abb5e1
- Brehler, M., Schirwon, M., Krummrich, P. M., & Göddeke, D. (2020). Simulation of Nonlinear Signal Propagation in Multimode Fibers on Multi-GPU Systems. Communications in Nonlinear Science and Numerical Simulation, 84, 105150. https://doi.org/10.1016/j.cnsns.2019.105150
- Brencher, L., & Barth, A. (2020). Hyperbolic Conservation Laws with Stochastic Discontinuous Flux Functions. International Conference on Finite Volumes for Complex Applications, 265--273.
- Bringedal, C., Von Wolff, L., & Pop, I. S. (2020). Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments. Multiscale Modeling &$\mathsemicolon$ Simulation, 18(2), Article 2. https://doi.org/10.1137/19m1239003
- Brinker, J., & Wirth, J. (2020). Gelfand Triples for the Kohn–Nirenberg Quantization on Homogeneous Lie Groups. In Advances in Harmonic Analysis and Partial Differential Equations. (S. 51–97). Birkhäuser. https://doi.org/10.1007/978-3-030-58215-9_3
- Buchfink, P., Haasdonk, B., & Rave, S. (2020). PSD-Greedy Basis Generation for Structure-Preserving Model Order Reduction of Hamiltonian Systems. In P. Frolkovič, K. Mikula, & D. Ševčovič (Hrsg.), Proceedings of the Conference Algoritmy 2020 (S. 151--160). Vydavateľstvo SPEKTRUM. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/1577/829
- Burbulla, S., & Rohde, C. (2020). A fully conforming finite volume approach to two-phase flow in fractured porous media. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Hrsg.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (S. 547–555). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_51
- de Rijk, B., & Schneider, G. (2020). Global Existence and Decay in Nonlinearly Coupled Reaction-Diffusion-Advection Equations with Different Velocities. J. Differential Equations, 268(7), Article 7. https://doi.org/10.1016/j.jde.2019.09.056
- Díaz-Ramos, J. C., Domínguez-Vázquez, M., & Kollross, A. (2020). On homogeneous manifolds whose isotropy actions are polar. manuscripta mathematica, 161(1), Article 1. https://doi.org/10.1007/s00229-018-1077-1
- Eggenweiler, E., & Rybak, I. (2020). Unsuitability of the Beavers-Joseph interface condition for filtration problems. J. Fluid Mech., 892, A10. http://dx.doi.org/10.1017/jfm.2020.194
- Eggenweiler, E., & Rybak, I. (2020). Interface conditions for arbitrary flows in coupled porous-medium and free-flow systems. In R. Klöfkorn, E. Keilegavlen, F. Radu, & J. Fuhrmann (Hrsg.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (Bd. 323, S. 345--353). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_31
- Escher, J., Knopf, P., Lienstromberg, C., & Matioc, B.-V. (2020). Stratified periodic water waves with singular density gradients. Ann. Mat. Pura Appl. (4), 199(5), Article 5. https://doi.org/10.1007/s10231-020-00950-1
- IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22-25, 2018: MORCOS 2018. (2020). In J. Fehr & B. Haasdonk (Hrsg.), IUTAM Bookseries. Springer.
- Fischer, S., & Steinwart, I. (2020). Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm. J. Mach. Learn. Res., 205, Article 205.
- Fischer, S., & Steinwart, I. (2020). Sobolev norm learning rates for regularized least-squares algorithms. J. Mach. Learn. Res., 21(205), Article 205. http://jmlr.org/papers/v21/19-734.html
- Geck, M. (2020). Green functions and Glauberman degree-divisibility. Annals of Mathematics, 192(1), Article 1. https://doi.org/10.4007/annals.2020.192.1.4
- Geck, M. (2020). Computing Green functions in small characteristic. Journal of Algebra, 561, 163--199. https://doi.org/10.1016/j.jalgebra.2019.12.016
- Geck, M. (2020). ChevLie: Constructing Lie algebras and Chevalley groups. Journal of Software for Algebra and Geometry, 10(1), Article 1. https://doi.org/10.2140/jsag.2020.10.41
- Geck, M. (2020). On Jacob’s construction of the rational canonical form of a matrix. The Electronic Journal of Linear Algebra, 36(36), Article 36. https://doi.org/10.13001/ela.2020.5055
- Geck, M., & Malle, G. (2020). The character theory of finite groups of Lie type. A guided tour. In Cambridge Studies in Advanced Mathematics (Bd. 187, S. ix+394). Cambridge University Press. https://doi.org/10.1017/9781108779081
- Advances in Harmonic Analysis and Partial Differential Equations. (2020). In V. Georgiev, T. Ozawa, M. Ruzhansky, & J. Wirth (Hrsg.), Trends in Mathematics. Birkhäuser. https://doi.org/10.1007/978-3-030-58215-9
- Gerstenberger, J. T., Burbulla, S., & Kröner, D. (2020). Discontinuous Galerkin method for incompressible two-phase flows. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Hrsg.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (S. 675–683). Springer International Publishing.
- Giesselmann, J., Meyer, F., & Rohde, C. (2020). An a posteriori error analysis based on non-intrusive spectral projections for systems of random conservation laws. In A. Bressan, M. Lewicka, D. Wang, & Y. Zheng (Hrsg.), Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018 (Bd. 10, S. 449–456). AIMS Series on Applied Mathematics. https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf
- Giesselmann, J., Meyer, F., & Rohde, C. (2020). A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws. BIT Numer. Math. https://doi.org/10.1007/s10543-019-00794-z
- Giesselmann, J., Meyer, F., & Rohde, C. (2020). A posteriori error analysis for random scalar conservation laws using the Stochastic Galerkin method. IMA J. Numer. Anal., 40(2), Article 2. https://doi.org/10.1093/imanum/drz004
- Ginoux, N., Habib, G., Pilca, M., & Semmelmann, U. (2020). An Obata-type characterisation of Calabi metrics on line bundles. North-West. Eur. J. Math., 6, 119--136, i.
- Giraud, L., Rüde, U., & Stals, L. (2020). Resiliency in Numerical Algorithm Design for Extreme Scale Simulations (Dagstuhl Seminar 20101). Dagstuhl Reports, 10(3), Article 3. https://doi.org/10.4230/DagRep.10.3.1
- Griesemer, M., Hofacker, M., & Linden, U. (2020). From short-range to contact interactions in the 1d Bose gas. Math. Phys. Anal. Geom., 23(2), Article 2. https://doi.org/10.1007/s11040-020-09344-4
- Grunert, D., Fehr, J., & Haasdonk, B. (2020). Well-scaled, a-posteriori error estimation for model order reduction of large second-order mechanical systems. ZAMM, 100(8), Article 8. https://doi.org/10.1002/zamm.201900186
- Göddeke, D., Schirwon, M., & Borg, N. (2020). Smartphone-Apps im Mathematikstudium. https://doi.org/10.18419/darus-1147
- Haas, T., de Rijk, B., & Schneider, G. (2020). MODULATION EQUATIONS NEAR THE ECKHAUS BOUNDARY: THE KdV EQUATION. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 52(6), Article 6. https://doi.org/10.1137/19M1266873
- Haas, T., & Schneider, G. (2020). Failure of the N-wave interaction approximation without imposing periodic boundary conditions. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 100(6), Article 6. https://doi.org/10.1002/zamm.201900230
- Haasdonk, B., Hamzi, B., Santin, G., & Wittwar, D. (2020). Greedy kernel methods for center manifold approximation. In Spectral and high order methods for partial differential equations---ICOSAHOM 2018 (Bd. 134, S. 95--106). Springer, Cham. https://doi.org/10.1007/978-3-030-39647-3\_6
- Hilder, B. (2020). Modulating traveling fronts for the Swift-Hohenberg equation in the case of an additional conservation law. Journal of Differential Equations, 269(5), Article 5. https://doi.org/10.1016/j.jde.2020.03.033
- Hitz, T., Keim, J., Munz, C.-D., & Rohde, C. (2020). A parabolic relaxation model for the Navier-Stokes-Korteweg equations. J. Comput. Phys., 421, 109714. https://doi.org/10.1016/j.jcp.2020.109714
- Holicki, T., & Scherer, C. W. (2020). Output-Feedback Synthesis for a Class of Aperiodic Impulsive Systems. IFAC-PapersOnline, 53(2), Article 2. https://doi.org/10.1016/j.ifacol.2020.12.981
- Holzmüller, D., & Steinwart, I. (2020). Training Two-Layer ReLU Networks with Gradient Descent is Inconsistent. Fakultät für Mathematik und Physik, Universität Stuttgart.
- Holzmüller, D., & Steinwart, I. (2020). Training two-layer ReLU networks with gradient descent is inconsistent. arXiv:2002.04861. https://arxiv.org/abs/2002.04861
- Häufle, D. F. B., Wochner, I., Holzmüller, D., Driess, D., Günther, M., & Schmitt, S. (2020). Muscles Reduce Neuronal Information Load : Quantification of Control Effort in Biological vs. Robotic Pointing and Walking. Frontiers In Robotics and AI, 7, 77. https://doi.org/10.3389/frobt.2020.00077
- Jentsch, T., & Weingart, G. (2020). RIEMANNIAN AND KAHLERIAN NORMAL COORDINATES. ASIAN JOURNAL OF MATHEMATICS, 24(3), Article 3.
- Kennedy, J. B., & Lang, R. (2020). On the eigenvalues of quantum graph Laplacians with large complex δ couplings. Portugaliae Mathematica. A Journal of the Portuguese Mathematical Society, 77(2), Article 2.
- Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (2020). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.02.012
- Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2020). Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier-Stokes systems with L∞ strongly elliptic coefficient tensor. Complex Var. Elliptic Equ., 65(1), Article 1. https://doi.org/10.1080/17476933.2019.1631293
- Kollross, A. (2020). Octonions, triality, the exceptional Lie algebra F4 and polar actions on the Cayley hyperbolic plane. International Journal of Mathematics, 31(07), Article 07. https://doi.org/10.1142/s0129167x20500512
- Lienstromberg, C., & Müller, S. (2020). Local strong solutions to a quasilinear degenerate fourth-order thin-film equation. NoDEA Nonlinear Differential Equations Appl., 27(2), Article 2. https://doi.org/10.1007/s00030-020-0619-x
- Magiera, J., Ray, D., Hesthaven, J. S., & Rohde, C. (2020). Constraint-aware neural networks for Riemann problems. J. Comput. Phys., 409(109345), Article 109345. https://doi.org/10.1016/j.jcp.2020.109345
- Maier, D. (2020). Construction of breather solutions for nonlinear Klein-Gordon equations on periodic metric graphs. JOURNAL OF DIFFERENTIAL EQUATIONS, 268(6), Article 6. https://doi.org/10.1016/j.jde.2019.09.035
- Maier, D. (2020). BREATHER SOLUTIONS ON DISCRETE NECKLACE GRAPHS. OPERATORS AND MATRICES, 14(3), Article 3. https://doi.org/10.7153/oam-2020-14-48
- Michalowsky, S., Scherer, C., & Ebenbauer, C. (2020). Robust and structure exploiting optimisation algorithms : an integral quadratic constraint approach. International Journal of Control, 2020, 1–24. https://doi.org/10.1080/00207179.2020.1745286
- Minorics, L. A. (2020). Spectral asymptotics for Krein-Feller operators with respect to V-variable Cantor measures. Forum Mathematicum, 32(1), Article 1. https://doi.org/10.1515/forum-2018-0188
- Nagy, P.-A., & Semmelmann, U. (2020). Conformal Killing forms in Kaehler geometry.
- Naveira, A. M., & Semmelmann, U. (2020). Conformal Killing forms on nearly Kähler manifolds. Differential Geom. Appl., 70, 101628, 9. https://doi.org/10.1016/j.difgeo.2020.101628
- Oesting, M., & Schnurr, A. (2020). Ordinal patterns in clusters of subsequent extremes of regularly varying time series. Extremes, 23(4), Article 4. https://doi.org/10.1007/s10687-020-00391-2
- Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian(3)Active Learning for the Gaussian Process Emulator Using Information Theory. ENTROPY, 22(8), Article 8. https://doi.org/10.3390/e22080890
- Ostrowski, L., Massa, F. C., & Rohde, C. (2020). A phase field approach to compressible droplet impingement. In G. Lamanna, S. Tonini, G. E. Cossali, & B. Weigand (Hrsg.), Droplet Interactions and Spray Processes (S. 113–126). Springer International Publishing. https://doi.org/10.1007/978-3-030-33338-6_9
- Ostrowski, L., & Rohde, C. (2020). Compressible multicomponent flow in porous media with Maxwell-Stefan diffusion. Math. Meth. Appl. Sci., 43(7), Article 7. https://doi.org/10.1002/mma.6185
- Ostrowski, L., & Rohde, C. (2020). Phase field modelling for compressible droplet impingement. In A. Bressan, M. Lewicka, D. Wang, & Y. Zheng (Hrsg.), Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018 (Bd. 10, S. 586–593). AIMS Series on Applied Mathematics. https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf
- Pelinovsky, D. E., & Schneider, G. (2020). The monoatomic FPU system as a limit of a diatomic FPU system. Appl. Math. Lett., 107, 7.
- Polyakova, A. P., Svetov, I. E., & Hahn, B. N. (2020). The Singular Value Decomposition of the Operators of the Dynamic Ray Transforms Acting on 2D Vector Fields. In Y. D. Sergeyev & D. E. Kvasov (Hrsg.), Numerical Computations: Theory and Algorithms (S. 446--453). Springer International Publishing. https://doi.org/10.1007/978-3-030-40616-5_42
- Rigaud, G., & Hahn, B. N. (2020). Reconstruction algorithm for 3D Compton scattering imaging with incomplete data. Inverse Problems in Science and Engineering, 29(7), Article 7. https://doi.org/10.1080/17415977.2020.1815723
- Rohde, C., & von Wolff, L. (2020). Homogenization of non-local Navier-Stokes-Korteweg equations for compressible liquid-vapour flow in porous media. SIAM J. Math. Anal., 52(6), Article 6. https://doi.org/10.1137/19M1242434
- Rybak, I., & Metzger, S. (2020). A dimensionally reduced Stokes-Darcy model for fluid flow in fractured porous media. Appl. Math. Comp., 384. https://doi.org/10.1016/j.amc.2020.125260
- Rösinger, C. A., & Scherer, C. W. (2020). Lifting to Passivity for $H_2$-Gain-Scheduling Synthesis with Full Block Scalings. IFAC-PapersOnline, 53(2), Article 2. https://doi.org/10.1016/j.ifacol.2020.12.570
- Rösinger, C. A., & Scherer, C. W. (2020). A Flexible Synthesis Framework of Structured Controllers for Networked Systems. IEEE Trans. Control Netw. Syst., 7(1), Article 1. https://doi.org/10.1109/TCNS.2019.2914411
- Schneider, G. (2020). The KdV approximation for a system with unstable resonances. Math. Methods Appl. Sci., 43(6), Article 6.
- Semmelmann, U., Wang, C., & Wang, M. Y.-K. (2020). On the linear stability of nearly Kähler 6-manifolds. Ann. Global Anal. Geom., 57(1), Article 1. https://doi.org/10.1007/s10455-019-09686-5
- Stein, A., & Barth, A. (2020). A Multilevel Monte Carlo Algorithm for Parabolic Advection-Diffusion Problems with Discontinuous Coefficients. In B. Tuffin & P. L’Ecuyer (Hrsg.), Monte Carlo and Quasi-Monte Carlo Methods (Bd. 324, S. 445--466). Springer International Publishing. https://doi.org/10.1007/978-3-030-43465-6_22
- Steinwart, I. (2020). Reproducing Kernel Hilbert Spaces Cannot Contain all Continuous Functions on a Compact Metric Space. Fakultät für Mathematik und Physik, Universität Stuttgart.
- Tielen, R., Möller, M., Göddeke, D., & Vuik, C. (2020). p-multigrid methods and their comparison to h-multigrid methods in Isogeometric Analysis. Computer Methods in Applied Mechanics and Engineering, 372, 113347. https://doi.org/10.1016/j.cma.2020.113347
- Vonica, A., Bhat, N., Phan, K., Guo, J., Iancu, L., Weber, J. A., Karger, A., Cain, J. W., Wang, E. C. E., DeStefano, G. M., O’Donnell-Luria, A. H., Christiano, A. M., Riley, B., Butler, S. J., & Luria, V. (2020). Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. Developmental Biology, 464(1), Article 1. https://doi.org/10.1016/j.ydbio.2020.03.015
2019
- Ammann, B., Kröncke, K., Weiss, H., & Witt, F. (2019). Holonomy rigidity for Ricci-flat metrics. Math. Z., 291(1–2), Article 1–2. https://doi.org/10.1007/s00209-018-2084-3
- Armiti-Juber, A., & Rohde, C. (2019). On Darcy-and Brinkman-type models for two-phase flow in asymptotically flat domains. Comput. Geosci., 23(2), Article 2. https://doi.org/10.1007/s10596-018-9756-2
- Armiti-Juber, A., & Rohde, C. (2019). Existence of weak solutions for a nonlocal pseudo-parabolic model for Brinkman two-phase flow in asymptotically flat porous media. J. Math. Anal. Appl., 477(1), Article 1. https://doi.org/10.1016/j.jmaa.2019.04.049
- Baggio, G., Zampieri, S., & Scherer, C. W. (2019). Gramian Optimization with Input-Power Constraints. 58th IEEE Conf. Decision and Control, 5686–5691. https://doi.org/10.1109/CDC40024.2019.9029169
- Bauer, R., Cummings, P., & Schneider, G. (2019). A model for the periodic water wave problem and its long wave amplitude equations. In Nonlinear water waves. An interdisciplinary interface. Based on the workshop held at the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria, November 27 -- December 7, 2017 (S. 123--138). Cham: Birkhäuser.
- Bauer, R., Düll, W.-P., & Schneider, G. (2019). The Korteweg--de Vries, Burgers and Whitham limits for a spatially periodic Boussinesq model. Proc. Roy. Soc. Edinburgh Sect. A, 149(1), Article 1. https://doi.org/10.1017/S0308210518000227
- Bhatt, A., Fehr, J., Grunert, D., & Haasdonk, B. (2019). A Posteriori Error Estimation in Model Order Reduction of Elastic Multibody Systems with Large Rigid Motion. In J. Fehr & B. Haasdonk (Hrsg.), IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. Springer. https://doi.org/DOI:10.1007/978-3-030-21013-7_7
- Bhatt, A., Fehr, J., & Haasdonk, B. (2019). Model order reduction of an elastic body under large rigid motion. Proceedings of ENUMATH 2017, Lect. Notes Comput. Sci. Eng.,(126), Article 126. https://doi.org/10.1007/978-3-319-96415-7\_23
- Bianchi, L. A., Blömker, D., & Schneider, G. (2019). Modulation equation and SPDEs on unbounded domains. Commun. Math. Phys., 371(1), Article 1.
- Brünnette, T., Santin, G., & Haasdonk, B. (2019). Greedy Kernel Methods for Accelerating Implicit Integrators for Parametric ODEs. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop (Hrsg.), Numerical Mathematics and Advanced Applications - ENUMATH 2017 (S. 889--896). Springer International Publishing.
- Buchfink, P., Bhatt, A., & Haasdonk, B. (2019). Symplectic Model Order Reduction with Non-Orthonormal Bases. Mathematical and Computational Applications, 24(2), Article 2. https://doi.org/10.3390/mca24020043
- Carlberg, K., Brencher, L., Haasdonk, B., & Barth, A. (2019). Data-Driven Time Parallelism via Forecasting. SIAM Journal on Scientific Computing, 41(3), Article 3. https://doi.org/10.1137/18M1174362
- Chirilus-Bruckner, M., Maier, D., & Schneider, G. (2019). Diffusive stability for periodic metric graphs. Math. Nachr., 292(6), Article 6.
- Colombo, R. M., LeFloch, P. G., Rohde, C., & Trivisa, K. (2019). Nonlinear Hyperbolic Problems: Modeling, Analysis, and Numerics. Oberwohlfach Rep., 16, Article 16. https://www.ems-ph.org/journals/show_issue.php?issn=1660-8933&vol=16&iss=2
- Conlon, R., Degeratu, A., & Rochon, F. (2019). Quasi-asymptotically conical Calabi-Yau manifolds. Geom. Topol., 23(1), Article 1. https://doi.org/10.2140/gt.2019.23.29
- Defant, A., Mastyo, M., Sánchez-Pérez, E. A., & Steinwart, I. (2019). Translation invariant maps on function spaces over locally compact groups. J. Math. Anal. Appl., 470, 795--820. https://doi.org/10.1016/j.jmaa.2018.10.033
- Denzel, A., Haasdonk, B., & Kästner, J. (2019). Gaussian Process Regression for Minimum Energy Path Optimization and Transition State Search. J. Phys. Chem. A, 123(44), Article 44. https://doi.org/10.1021/acs.jpca.9b08239
- Engelke, S., de Fondeville, R., & Oesting, M. (2019). Extremal behaviour of aggregated data with an application to downscaling. Biometrika, 106(1), Article 1. https://doi.org/10.1093/biomet/asy052
- Farooq, M., & Steinwart, I. (2019). Learning Rates for Kernel-Based Expectile Regression. Mach. Learn., 108, 203--227. https://doi.org/10.1007/s10994-018-5762-9
- Föll, R., Haasdonk, B., Hanselmann, M., & Ulmer, H. (2019). Deep Recurrent Gaussian Process with Variational Sparse Spectrum Approximation. https://openreview.net/forum?id=BkgosiRcKm
- Geck, M. (2019). Eigenvalues and Polynomial Equations. The American Mathematical Monthly, 126(10), Article 10. https://doi.org/10.1080/00029890.2019.1651168
- Griesemer, M., & Linden, U. (2019). Spectral theory of the Fermi polaron. Ann. Henri Poincaré, 20(6), Article 6. https://doi.org/10.1007/s00023-019-00796-1
- Gyorfi, L., Henze, N., & Walk, H. (2019). The Limit Distribution Of The Maximum Probability Nearest-Neighbour Ball. Journal of Applied Probability, 56(2), Article 2. https://doi.org/10.1017/jpr.2019.37
- Györfi, L., & Walk, H. (2019). Nearest neighbor based conformal prediction. Annales de l’ISUP, 63(2–3), Article 2–3. https://hal.science/hal-03603867
- Hahn, B. N., & Kienle Garrido, M.-L. (2019). An efficient reconstruction approach for a class of dynamic imaging operators. Inverse Problems, 35(9), Article 9. https://doi.org/10.1088/1361-6420/ab178b
- Hansmann, M., Kohler, M., & Walk, H. (2019). On the strong universal consistency of local averaging regression estimates (vol 71, pg 1233, 2019). ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 71(5), Article 5. https://doi.org/10.1007/s10463-018-0687-4
- Heil, K., & Jentsch, T. (2019). A special class of symmetric Killing 2-tensors. JOURNAL OF GEOMETRY AND PHYSICS, 138, 103–123. https://doi.org/10.1016/j.geomphys.2018.12.009
- Holicki, T., & Scherer, C. W. (2019). A Homotopy Approach for Robust Output-Feedback Synthesis. Proc. 27th. Med. Conf. Control Autom., 87–93. https://doi.org/10.1109/MED.2019.8798536
- Holicki, T., & Scherer, C. W. (2019). Stability Analysis and Output-Feedback Synthesis of Hybrid Systems Affected by Piecewise Constant Parameters via Dynamic Resetting Scalings. Nonlinear Anal. Hybri., 34, 179–208. https://doi.org/10.1016/j.nahs.2019.06.003
- Homma, Y., & Semmelmann, U. (2019). The Kernel of the Rarita-Schwinger Operator on Riemannian Spin Manifolds. Comm. Math. Phys., 370(3), Article 3. https://doi.org/10.1007/s00220-019-03324-8
- Höllig, K., & Hörner, J. (2019). Aufgaben und Lösungen zur Höheren Mathematik. - 1. [Aufgabensammlung]. In Aufgaben und Lösungen zur Höheren Mathematik ; 1 (2. Auflage, Bd. 1, S. x, 235 Seiten). Springer Spektrum.
- Kluth, T., Hahn, B. N., & Brandt, C. (2019). Spatio-temporal concentration reconstruction using motion priors in magnetic particle imaging. Proc. Int. Workshop Magnetic Particle Imaging.
- Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2019). Newtonian and Single Layer Potentials for the Stokes System with L∞ Coefficients and the Exterior Dirichlet Problem. In S. Rogosin & A. O. Celebi (Hrsg.), Analysis as a Life: Dedicated to Heinrich Begehr on the Occasion of his 80th Birthday (S. 237--260). Springer International Publishing. https://doi.org/10.1007/978-3-030-02650-9_12
- Kohr, M., & Wendland, W. L. (2019). Boundary value problems for the Brinkman system with L∞ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach. Journal de Mathématiques Pures et Appliquées, 131, Article 131. https://doi.org/10.1016/j.matpur.2019.04.002
- Kuhn, T., Dürrwächter, J., Meyer, F., Beck, A., Rohde, C., & Munz, C.-D. (2019). Uncertainty quantification for direct aeroacoustic simulations of cavity flows. J. Theor. Comput. Acoust., 27(1), Article 1. https://doi.org/10.1142/S2591728518500445
- Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., Wittwar, D., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2019). Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario. Comput. Geosci., 2(23), Article 23. https://doi.org/10.1007/s10596-018-9785-x
- Mazzeo, R., Swoboda, J., Weiss, H., & Witt, F. (2019). Asymptotic geometry of the Hitchin metric. Commun. Math. Phys., 367(1), Article 1. https://doi.org/10.1007/s00220-019-03358-y
- Miller, C. T., Gray, W. G., Kees, C. E., Rybak, I. V., & Shepherd, B. J. (2019). Modeling sediment transport in three-phase surface water systems. J. Hydraul. Res., 57. https://doi.org/10.1080/00221686.2019.1581673
- Mücke, N., & Steinwart, I. (2019). Empirical Risk Minimization in the Interpolating Regime with Application to Neural Network Learning. Fakultät für Mathematik und Physik, Universität Stuttgart.
- Oesting, M., Schlather, M., & Schillings, C. (2019). Sampling sup-normalized spectral functions for Brown-Resnick processes. Stat, 8, e228, 11. https://doi.org/10.1002/sta4.228
- Ostrowski, L., & Massa, F. (2019). An incompressible-compressible approach for droplet impact. In G. Cossali & S. Tonini (Hrsg.), Proceedings of the DIPSI Workshop 2019: Droplet ImpactPhenomena & Spray Investigations, Bergamo, Italy, 17th May 2019 (S. 18–21). Università degli studi di Bergamo. https://doi.org/10.6092/DIPSI2019_pp18-21
- Rösinger, C. A., & Scherer, C. W. (2019). A Flexible Synthesis Framework of Structured Controllers for Networked Systems. IEEE Trans. Control Netw. Syst., 7(1), Article 1. https://doi.org/10.1109/TCNS.2019.2914411
- Rösinger, C. A., & Scherer, C. W. (2019). A Scalings Approach to $H_2$-Gain-Scheduling Synthesis without Elimination. IFAC-PapersOnLine, 52(28), Article 28. https://doi.org/10.1016/j.ifacol.2019.12.347
- Santin, G., & Haasdonk, B. (2019). Kernel Methods for Surrogate Modelling. University of Stuttgart.
- Santin, G., & Haasdonk, B. (2019). Kernel Methods for Surrogate Modeling (ArXiv No. 1907.10556; Nummer 1907.10556). https://arxiv.org/abs/1907.10556
- Santin, G., Wittwar, D., & Haasdonk, B. (2019). Sparse approximation of regularized kernel interpolation by greedy algorithms.
- Schanz, M., Wasser, C., Allgaeuer, S., Schricker, S., Dippon, J., Alscher, MD., & Kimmel, M. (2019). Urinary TIMP-2·IGFBP7-guided randomized controlled intervention trial to prevent acute kidney injury in the emergency department. Transplant., 2019 Nov 1;34(11), 1902–1909. https://doi.org/10.1093/ndt/gfy186
- Schmidt, A., Wittwar, D., & Haasdonk, B. (2019). Rigorous and effective a-posteriori error bounds for nonlinear problems -- Application to RB methods. Advances in Computational Mathematics. https://doi.org/10.1007/s10444-019-09730-9
- Schricker, S., Heider, T., Schanz, M., Dippon, J., Alscher, MD., Weiss, H., Mettang, T., & Kimmel, M. (2019). Strong Associations Between Inflammation, Pruritus and Mental Health in Dialysis Patients. Acta Derm Venereol., 2019 May 1;99(6), 524–529. https://doi.org/10.2340/00015555-3128
- Semmelmann, U., & Weingart, G. (2019). The standard Laplace operator. Manuscripta Math., 158(1–2), Article 1–2. https://doi.org/10.1007/s00229-018-1023-2
- Seus, D., Radu, F. A., & Rohde, C. (2019). A linear domain decomposition method for two-phase flow in porous media. Numerical Mathematics and Advanced Applications ENUMATH 2017, 603–614. https://doi.org/10.1007/978-3-319-96415-7_55
- Sharanya, V., Sekhar, G. P. R., & Rohde, C. (2019). Surfactant-induced migration of a spherical droplet in non-isothermal Stokes flow. Physics of Fluids, 31(1), Article 1. https://doi.org/10.1063/1.5064694
- Steinwart, I. (2019). A Sober Look at Neural Network Initializations. Fakultät für Mathematik und Physik, Universität Stuttgart.
- Steinwart, I. (2019). Convergence Types and Rates in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties. Potential Anal., 51, 361--395. https://doi.org/10.1007/s11118-018-9715-5
- Wenzel, T., Santin, G., & Haasdonk, B. (2019). A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability & uniform point distribution.
- Wittwar, D., & Haasdonk, B. (2019). Greedy Algorithms for Matrix-Valued Kernels. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop (Hrsg.), Numerical Mathematics and Advanced Applications ENUMATH 2017 (S. 113--121). Springer International Publishing.
- Wittwar, D., Santin, G., & Haasdonk, B. (2019). Part II on matrix valued kernels including analysis.
- Zhang, R., Kyriss, T., Dippon, J., Boedeker, E., & Friedel, G. (2019). Preoperative serum lactate dehydrogenase level as a predictor of major omplications following thoracoscopic lobectomy: a propensity-adjusted analysis. European Journal of Cardio-Thoracic Surgery, 56(2), Article 2. https://doi.org/10.1093/ejcts/ezz027
- Zhang, R., Dippon, J., & Friedel, G. (2019). Refined risk stratification for thoracoscopic lobectomy or segmentectomy. Journal of Thoracic Disease, 11(1), Article 1. https://doi.org/10.21037/jtd.2018.12.44
- Zhang R, Dippon J, F. G. (2019). Refined risk stratification for thoracoscopic lobectomy or segmentectomy. Dis., J Thorac, 2019 Jan;11(1), :222-230. https://doi.org/10.21037/jtd.2018.12.44
2018
- Afkham, B. M., Bhatt, A., Haasdonk, B., & Hesthaven, J. S. (2018). Symplectic Model-Reduction with a Weighted Inner Product.
- Altenbernd, M., & Göddeke, D. (2018). Soft fault detection and correction for multigrid. The International Journal of High Performance Computing Applications, 32(6), Article 6. https://doi.org/10.1177/1094342016684006
- Barth, A., & Kröker, I. (2018). Finite Volume Methods for Hyperbolic Partial Differential Equations with Spatial Noise. In C. Klingenberg & M. Westdickenberg (Hrsg.), Theory, Numerics and Applications of Hyperbolic Problems I (S. 125--135). Springer International Publishing.
- Barth, A., & Stein, A. (2018). A Study of Elliptic Partial Differential Equations with Jump Diffusion Coefficients. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 6(4), Article 4. https://doi.org/10.1137/17M1148888
- Barth, A., & Stein, A. (2018). Approximation and simulation of infinite-dimensional Levy processes. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 6(2), Article 2. https://doi.org/10.1007/s40072-017-0109-2
- Barth, A., & Stüwe, T. (2018). Weak convergence of Galerkin approximations of stochastic partial differential equations driven by additive Lévy noise. Math. Comput. Simulation, 143, 215--225. https://doi.org/10.1016/j.matcom.2017.03.007
- Bhatt, A., Fehr, J., Grunert, D., & Haasdonk, B. (2018). A Posteriori Error Estimation in Model Order Reduction of Elastic Multibody Systems with Large Rigid Motion. In J. Fehr & B. Haasdonk (Hrsg.), IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. Springer. https://doi.org/DOI:10.1007/978-3-030-21013-7_7
- Bhatt, A., & Haasdonk, B. (2018). Certified and structure-preserving model order reduction of EMBS. In RAMSA 2017, New Delhi.
- Bhatt, A., Haasdonk, B., & Moore, B. E. (2018). Structure-preserving Integration and Model Order Reduction. In Invited online talk in Department of Mathematics, IIT Roorkee.
- Blaschzyk, I., & Steinwart, I. (2018). Improved Classification Rates under Refined Margin Conditions. Electron. J. Stat., 12, 793--823. https://doi.org/10.1214/18-EJS1406
- Bradley, C. P., Emamy, N., Ertl, T., Göddeke, D., Hessenthaler, A., Klotz, T., Krämer, A., Krone, M., Maier, B., Mehl, M., Tobias, R., & Röhrle, O. (2018). Enabling Detailed, Biophysics-Based Skeletal Muscle Models on HPC Systems. Frontiers in Physiology, 9(816), Article 816. https://doi.org/10.3389/fphys.2018.00816
- Brehler, M., Schirwon, M., Göddeke, D., & Krummrich, P. (2018, Juli). Modeling the Kerr-Nonlinearity in Mode-Division Multiplexing Fiber Transmission Systems on GPUs. Proceedings of Advanced Photonics 2018.
- Brünnette, T., Santin, G., & Haasdonk, B. (2018). Greedy kernel methods for accelerating implicit integrators for parametric ODEs. Proc. ENUMATH 2017.
- Buchfink, P. (2018). Structure-preserving Model Reduction for Elasticity [Diploma thesis].
- Chalons, C., Magiera, J., Rohde, C., & Wiebe, M. (2018). A finite-volume tracking scheme for two-phase compressible flow. Springer Proc. Math. Stat., 309--322. https://doi.org/10.1007/978-3-319-91545-6_25
- De Marchi, S., Iske, A., & Santin, G. (2018). Image reconstruction from scattered Radon data by weighted positive definite kernel functions. Calcolo, 55(1), Article 1. https://doi.org/10.1007/s10092-018-0247-6
- de Rijk, B. (2018). Spectra and stability of spatially periodic pulse patterns II: the critical spectral curve. SIAM J. Math. Anal., 50(2), Article 2. https://doi.org/10.1137/17M1127594
- de Rijk, B., & Sandstede, B. (2018). Diffusive stability against nonlocalized perturbations of planar wave trains in reaction-diffusion systems. J. Differential Equations, 265(10), Article 10. https://doi.org/10.1016/j.jde.2018.07.011
- Degeratu, A., & Mazzeo, R. (2018). Fredholm theory for elliptic operators on quasi-asymptotically conical spaces. Proc. Lond. Math. Soc. (3), 116(5), Article 5. https://doi.org/10.1112/plms.12105
- Devroye, L., Gyorfi, L., Lugosi, G., & Walk, H. (2018). A nearest neighbor estimate of the residual variance. ELECTRONIC JOURNAL OF STATISTICS, 12(1), Article 1. https://doi.org/10.1214/18-EJS1438
- Dibak, C., Haasdonk, B., Schmidt, A., Dürr, F., & Rothermel, K. (2018). Enabling interactive mobile simulations through distributed reduced models. Pervasive and Mobile Computing, Elsevier BV, 45, 19--34. https://doi.org/10.1016/j.pmcj.2018.02.002
- Doelman, A., Rademacher, J., de Rijk, B., & Veerman, F. (2018). Destabilization Mechanisms of Periodic Pulse Patterns Near a Homoclinic Limit. SIAM J. Appl. Dyn. Syst., 17(2), Article 2. https://doi.org/10.1137/17M1122840
- Doering, M., Gyorfi, L., & Walk, H. (2018). Rate of Convergence of k-Nearest-Neighbor Classification Rule. JOURNAL OF MACHINE LEARNING RESEARCH, 18.
- Düll, W.-P. (2018). On the mathematical description of time-dependent surface water waves. Jahresber. Dtsch. Math.-Ver., 120(2), Article 2. https://doi.org/10.1365/s13291-017-0173-6
- Düll, W.-P., & Heß, M. (2018). Existence of long time solutions and validity of the nonlinear Schrödinger approximation for a quasilinear dispersive equation. J. Differential Equations, 264(4), Article 4. https://doi.org/10.1016/j.jde.2017.10.031
- Düll, W.-P., Hilder, B., & Schneider, G. (2018). Analysis of the embedded cell method in 1D for the numerical homogenization of metal-ceramic composite materials. J. Appl. Anal., 24(1), Article 1. https://doi.org/10.1515/jaa-2018-0007
- Düll, W.-P., Hilder, B., & Schneider, G. (2018). Analysis of the embedded cell method in 1D for the numerical homogenization of metal-ceramic composite materials. J. Appl. Anal., 24(1), Article 1.
- Dürrwächter, J., Kuhn, T., Meyer, F., Schlachter, L., & Schneider, F. (2018). A hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equations. Journal of Computational and Applied Mathematics, 112602. https://doi.org/10.1016/j.cam.2019.112602
- Engwer, C., Altenbernd, M., Dreier, N.-A., & Göddeke, D. (2018, März). A high-level C++ approach to manage local errors, asynchrony and faults in an MPI application. Proceedings of the 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2018).
- Escher, J., & Lienstromberg, C. (2018). Travelling waves in dilatant non-Newtonian thin films. J. Differential Equations, 264(3), Article 3. https://doi.org/10.1016/j.jde.2017.10.015
- Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2018). Approximate Riemann solver for compressible liquid vapor flow with phase transition and surface tension. Comput. & Fluids, 169, 169–185. http://dx.doi.org/10.1016/j.compfluid.2017.03.026
- Fehr, J., Grunert, D., Bhatt, A., & Haasdonk, B. (2018). A Sensitivity Study of Error Estimation in Reduced Elastic Multibody Systems. Proceedings of MATHMOD 2018, Vienna, Austria.
- Fritz, P., Dippon, J., Müller, S., Goletz, S., Trautmann, C., Pappas, X., Ott, G., Brauch, H., Schwab, M., Winter, S., Mürdter, T., Brinkmann, F., Faisst, S., Rössle, S., Gerteis, A., & Friedel, G. (2018). Is Mistletoe Treatment Beneficial in Invasive Breast Cancer? A New Approach to an Unresolved Problem. Anticancer research, 38(3), Article 3. https://doi.org/10.21873/anticanres.12388
- Fritzen, F., Haasdonk, B., Ryckelynck, D., & Schöps, S. (2018). An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem. Math. Comput. Appl. 2018, 23(1), Article 1. https://doi.org/doi:10.3390/mca23010008
- Geck, M. (2018). A first guide to the character theory of finite groups of Lie type. Local Representation Theory and Simple Groups (eds. R. Kessar, G. Malle, D. Testerman), 63--106. https://doi.org/10.4171/185-1/3
- Geck, M. (2018). On the values of unipotent characters in bad characteristic. Rendiconti del Seminario Matematico della Università di Padova, 141, 37--63. https://doi.org/10.4171/rsmup/14
- Georgiev, V., & Wirth, J. (2018). Zero resonances for localised potentials. Journal of Mathematical Physics, 59(7), Article 7. https://doi.org/10.1063/1.5027717
- Giesselmann, J., Kolbe, N., Lukacova-Medvidova, M., & Sfakianakis, N. (2018). Existence and uniqueness of global classical solutions to a two species cancer invasion haptotaxis model. Accepted for publication in Discrete Contin. Dyn. Syst. Ser. B. https://arxiv.org/abs/1704.08208
- Gimperlein, H., Meyer, F., Özdemir, C., Stark, D., & Stephan, E. P. (2018). Boundary elements with mesh refinements for the wave equation. Numer. Math., 139(4), Article 4. https://doi.org/10.1007/s00211-018-0954-6
- Gimperlein, H., Meyer, F., Özdemir, C., & Stephan, E. P. (2018). Time domain boundary elements for dynamic contact problems. Computer Methods in Applied Mechanics and Engineering, 333, 147–175. https://doi.org/10.1016/j.cma.2018.01.025
- Griesemer, M., & Wünsch, A. (2018). On the domain of the Nelson Hamiltonian. J. Math. Phys., 59(4), Article 4. https://doi.org/10.1063/1.5018579
- Griesemer, M., & Linden, U. (2018). Stability of the two-dimensional Fermi polaron. Lett. Math. Phys., 108(8), Article 8. https://doi.org/10.1007/s11005-018-1055-2
- Guo, Y., & Scherer, C. W. (2018). Robust Gain-Scheduled Controller Design with a Hierarchical Structure. IFAC-PapersOnline, 51(25), Article 25. https://doi.org/10.1016/j.ifacol.2018.11.110
- Haasdonk, B., Hamzi, B., Santin, G., & Wittwar, D. (2018). Greedy Kernel Methods for Center Manifold Approximation (ArXiv No. 1810.11329; Nummer 1810.11329).
- Haasdonk, B., & Santin, G. (2018). Greedy Kernel Approximation for Sparse Surrogate Modeling. In W. Keiper, A. Milde, & S. Volkwein (Hrsg.), Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing (S. 21--45). Springer International Publishing. https://doi.org/10.1007/978-3-319-75319-5_2
- Haesaert, S., Weiland, S., & Scherer, C. W. (2018). A separation theorem for guaranteed $H_2$ performance through matrix inequalities. Automatica, 96, 306–313. https://doi.org/10.1016/j.automatica.2018.07.002
- Hang, H., Steinwart, I., Feng, Y., & Suykens, J. A. K. (2018). Kernel Density Estimation for Dynamical Systems. J. Mach. Learn. Res., 19, 1--49.
- Harbrecht, H., Wendland, W. L., & Zorii, N. (2018). Minimal energy problems for strongly singular Riesz kernels. Math. Nachr., 291, Article 291. https://doi.org/10.1002/mana.201600024
- Holicki, T., & Scherer, C. W. (2018). A Swapping Lemma for Switched Systems. IFAC-PapersOnLine, 51(25), Article 25. https://doi.org/10.1016/j.ifacol.2018.11.131
- Holicki, T., & Scherer, C. W. (2018). Output-Feedback Gain-Scheduling Synthesis for a Class of Switched Systems via Dynamic Resetting $D$-Scalings. 57th IEEE Conf. Decision and Control, 6440–6445. https://doi.org/10.1109/CDC.2018.8619128
- Hsiao, G. C., Steinbach, O., & Wendland, W. L. (2018). Boundary Element Methods: Foundation and Error Analysis. Encyclopedia of Computational Mechanics Second Edition, 62. https://doi.org/10.1002/9781119176817.ecm2007
- Kohler, M., Krzyzak, A., Tent, R., & Walk, H. (2018). Nonparametric quantile estimation using importance sampling. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 70(2), Article 2. https://doi.org/10.1007/s10463-016-0595-4
- Kohr, M., & Wendland, W. L. (2018). Variational approach for the Stokes and Navier-Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds. Calc. Var. Partial Differential Equations, 57(6), Article 6. https://doi.org/10.1007/s00526-018-1426-7
- Kohr, M., & Wendland, W. L. (2018). Layer Potentials and Poisson Problems for the Nonsmooth Coefficient Brinkman System in Sobolev and Besov Spaces. Journal of Mathematical Fluid Mechanics, 4(20), Article 20. https://doi.org/10.1007/s00021-018-0394-1
- Kovar\’ık, H., Ruszkowski, B., & Weidl, T. (2018). Melas-type bounds for the Heisenberg Laplacian on bounded domains. Journal of Spectral Theory, 8(2), Article 2. https://doi.org/10.4171/jst/200
- Kraemer, B., Scharpf, M., Keckstein, S., Dippon, J., Tsaousidis, C., Brunecker, K., Enderle, MD., Neugebauer, A., Nuessle, D., Fend, F., Brucker, S., Taran, FA., Kommoss, S., & Rothmund, R. (2018). A prospective randomized experimental study to investigate the peritoneal adhesion formation after waterjet injection and argon plasma coagulation (HybridAPC) in a rat model. Arch Gynecol Obstet., 2018, Apr;297(4), 961–967. https://doi.org/10.1007/s00404-018-4661-4
- Köppel, M., Martin, V., Jaffré, J., & Roberts, J. E. (2018). A Lagrange multiplier method for a discrete fracture model for flow in porous media. (submitted). https://hal.archives-ouvertes.fr/hal-01700663v2
- Köppel, M., Martin, V., & Roberts, J. E. (2018). A stabilized Lagrange multiplier finite-element method for flow in porous media with fractures. (submitted). https://hal.archives-ouvertes.fr/hal-01761591
- Köppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2018). Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods. International Journal for Numerical Methods in Biomedical Engineering, 0(ja), Article ja. https://doi.org/10.1002/cnm.3095
- Langer, A. (2018). Overlapping domain decomposition methods for total variation denoising. http://people.ricam.oeaw.ac.at/a.langer/publications/DDfTV.pdf
- Langer, A. (2018). Locally adaptive total variation for removing mixed Gaussian-impulse noise. International Journal of Computer Mathematics, 19. https://www.tandfonline.com/doi/abs/10.1080/00207160.2018.1438603
- Langer, A. (2018). Investigating the influence of box-constraints on the solution of a total variation model via an efficient primal-dual method. Journal of Imaging, 4, 1. http://www.mdpi.com/2313-433X/4/1/12
- Maboudi Afkham, B., & Hesthaven, J. S. (2018). Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems. Journal of Scientific Computing, 1–19. https://doi.org/10.1007/s10915-018-0653-6
- Magiera, J., & Rohde, C. (2018). A particle-based multiscale solver for compressible liquid-vapor flow. Springer Proc. Math. Stat., 291--304. https://doi.org/10.1007/978-3-319-91548-7_23
- Oesting, M. (2018). Equivalent representations of max-stable processes via $\ell^p$-norms. J. Appl. Probab., 55(1), Article 1. https://doi.org/10.1017/jpr.2018.5
- Oesting, M., Bel, L., & Lantuéjoul, C. (2018). Sampling from a max-stable process conditional on a homogeneous functional with an application for downscaling climate data. Scand. J. Stat., 45(2), Article 2. https://doi.org/10.1111/sjos.12299
- Oesting, M., Schlather, M., & Zhou, C. (2018). Exact and fast simulation of max-stable processes on a compact set using the normalized spectral representation. Bernoulli, 24(2), Article 2. https://doi.org/10.3150/16-BEJ905
- Oesting, M., & Stein, A. (2018). Spatial modeling of drought events using max-stable processes. Stoch. Env. Res. Risk A., 32(1), Article 1. https://doi.org/10.1007/s00477-017-1406-z
- Oesting, M., & Strokorb, K. (2018). Efficient simulation of Brown-Resnick processes based on variance reduction of Gaussian processes. Adv. in Appl. Probab., 50(4), Article 4. https://doi.org/10.1017/apr.2018.54
- Raja Sekhar, G. P., Sharanya, V., & Rohde, C. (2018). Effect of surfactant concentration and interfacial slip on the flow past a viscous drop at low surface Péclet number. International Journal of Multiphase Flow, 107, 82–103. http://arxiv.org/abs/1609.03410
- Rigaud, G., & Hahn, B. N. (2018). 3D Compton scattering imaging and contour reconstruction for a class of Radon transforms. Inverse Problems, 34(7), Article 7. https://doi.org/10.1088/1361-6420/aabf0b
- Rohde, C., & Zeiler, C. (2018). On Riemann solvers and kinetic relations for isothermal two-phase flows with surface tension. Z. Angew. Math. Phys., 3, Article 3. https://doi.org/10.1007/s00033-018-0958-1
- Rohde, C. (2018). Fully resolved compressible two-phase flow : modelling, analytical and numerical issues. In M. Bulicek, E. Feireisl, & M. Pokorný (Hrsg.), New trends and results in mathematical description of fluid flows (S. 115–181). Birkhäuser. https://doi.org/10.1007/978-3-319-94343-5
- Ruiz, P. A., Freiberg, U. R., & Kigami, J. (2018). Completely symmetric resistance forms on the stretched Sierpinski gasket. JOURNAL OF FRACTAL GEOMETRY, 5(3), Article 3. https://doi.org/10.4171/JFG/61
- Santin, G., Wittwar, D., & Haasdonk, B. (2018). Greedy regularized kernel interpolation (ArXiv preprint No. 1807.09575; Nummer 1807.09575). University of Stuttgart.
- Scherer, C. W., & Holicki, T. (2018). An IQC theorem for relations: Towards stability analysis of data-integrated systems. IFAC-PapersOnLine, 51(25), Article 25. https://doi.org/10.1016/j.ifacol.2018.11.138
- Scherer, C. W., & Veenman, J. (2018). Stability analysis by dynamic dissipation inequalities: On merging frequency-domain techniques with time-domain conditions. Syst. Control Lett., 121, 7–15. https://doi.org/10.1016/j.sysconle.2018.08.005
- Schmidt, A., & Haasdonk, B. (2018). Data-driven surrogates of value functions and applications to feedback control for dynamical systems. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1766
- Schmidt, A., Wittwar, D., & Haasdonk, B. (2018). Rigorous and effective a-posteriori error bounds for nonlinear problems -- Application to RB methods [SimTech Preprint]. University of Stuttgart.
- Schmidt, A., & Haasdonk, B. (2018). Reduced basis approximation of large scale parametric algebraic Riccati equations. ESAIM: Control, Optimisation and Calculus of Variations, 24(1), Article 1. https://doi.org/10.1051/cocv/2017011
- Schuster, T., Hahn, B., & Burger, M. (2018). Dynamic inverse problems: modelling—regularization—numerics. Inverse Problems, 34(4), Article 4. https://doi.org/10.1088/1361-6420/aab0f5
- Seus, D., Mitra, K., Pop, I. S., Radu, F. A., & Rohde, C. (2018). A linear domain decomposition method for partially saturated flow in porous media. Comp. Methods Appl. Mech. Eng., 333, 331--355. https://doi.org/10.1016/j.cma.2018.01.029
- Seus, D., Pop, I. S., Rohde, C., Mitra, K., & Radu, F. (2018). A linear domain decompostition method for partially saturated flow in porous media. Comput. Methods Appl. Mech. Eng., 333, 331–355. https://doi.org/10.1016/j.cma.2018.01.029
- Sharanya, V., Sekhar, G. P. R., & Rohde, C. (2018). The low surface Péclet number regime for surfactant-laden viscous droplets: Influence of surfactant concentration, interfacial slip effects and cross migration. Int. J. of Multiph. Flow, 107, Article 107. https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.008
- Wittwar, D., Santin, G., & Haasdonk, B. (2018). Interpolation with uncoupled separable matrix-valued kernels. ArXiv e-prints.
- Wittwar, D., & Haasdonk, B. (2018). Greedy Algorithms for Matrix-Valued Kernels. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1773
- Zhang, R., Kyriss, T., Dippon, J., Ciupa, S., Boedeker, E., & Friedel, G. (2018). Impact of comorbidity burden on morbidity following horacoscopic lobectomy: a propensity-matched analysis. J Thorac Dis., 2018 Mar;10(3), 1806–1814. https://doi.org/10.21037/jtd.2018.02.62
- Zhang, R., Kyriss, T., Dippon, J., Hansen, M., Boedeker, E., & Friedel, G. (2018). American Society of Anesthesiologists physical status facilitates risk stratification of elderly patients undergoing thoracoscopic lobectomy. European Journal of Cardio-Thoracic Surgery, 53(5), Article 5. https://doi.org/10.1093/ejcts/ezx436
2017
- Alkämper, M., & Klöfkorn, R. (2017). Distributed Newest Vertex Bisection. Journal of Parallel and Distributed Computing, 104, 1–11. http://dx.doi.org/10.1016/j.jpdc.2016.12.003
- Alkämper, M., Klöfkorn, R., & Gaspoz, F. (2017). A Weak Compatibility Condition for Newest Vertex Bisection in any Dimension. http://arxiv.org/abs/1711.03141
- Alkämper, M., & Langer, A. (2017). Using DUNE-ACFem for Non-smooth Minimization of Bounded Variation Functions. Archive of Numerical Software, 5(1), Article 1. https://journals.ub.uni-heidelberg.de/index.php/ans/article/view/27475
- Alla, A., Gunzburger, M., Haasdonk, B., & Schmidt, A. (2017). Model order reduction for the control of parametrized partial differential equations via dynamic programming principle. University of Stuttgart.
- Alla, A., Haasdonk, B., & Schmidt, A. (2017). Feedback control of parametrized PDEs via model order reduction and dynamic programming principle. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1765
- Alla, A., Schmidt, A., & Haasdonk, B. (2017). Model Order Reduction Approaches for Infinite Horizon Optimal Control Problems via the HJB Equation. In P. Benner, M. Ohlberger, A. Patera, G. Rozza, & K. Urban (Hrsg.), Model Reduction of Parametrized Systems (S. 333--347). Springer International Publishing. https://doi.org/10.1007/978-3-319-58786-8_21
- Barth, A., & Fuchs, F. G. (2017). Uncertainty quantification for linear hyperbolic equations with stochastic process or random field coefficients. APPLIED NUMERICAL MATHEMATICS, 121, 38–51. https://doi.org/10.1016/j.apnum.2017.06.009
- Barth, A., Harrach, B., Hyvoenen, N., & Mustonen, L. (2017). Detecting stochastic inclusions in electrical impedance tomography. INVERSE PROBLEMS, 33(11), Article 11. https://doi.org/10.1088/1361-6420/aa8f5c
- Barth, A., Harrach, B., Hyvönen, N., & Mustonen, L. (2017). Detecting stochastic inclusions in electrical impedance tomography. Inv. Prob., 33(11), Article 11. http://arxiv.org/abs/1706.03962
- Barth, A., & Stein, A. (2017). A study of elliptic partial differential equations with jump diffusion coefficients.
- Baur, U., Benner, P., Haasdonk, B., Himpe, C., Maier, I., & Ohlberger, M. (2017). Comparison of methods for parametric model order reduction of instationary problems. In P. Benner, A. Cohen, M. Ohlberger, & K. Willcox (Hrsg.), Model Reduction and Approximation: Theory and Algorithms. SIAM Philadelphia. https://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-01.pdf
- Bhatt, A., & VanGorder, R. (2017). Chaos in a non-autonomous nonlinear system describing asymmetric water wheels.
- Brehler, M., Schirwon, M., Göddeke, D., & Krummrich, P. M. (2017). A GPU-Accelerated Fourth-Order Runge-Kutta in the Interaction Picture Method for the Simulation of Nonlinear Signal Propagation in Multimode Fibers. Journal of Lightwave Technology, 35(17), Article 17. https://doi.org/10.1109/JLT.2017.2715358
- Brünnette, T., Santin, G., & Haasdonk, B. (2017). Greedy kernel methods for accelerating implicit integrators for parametric ODEs. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1767
- Bürger, R., & Kröker, I. (2017). Hybrid Stochastic Galerkin Finite Volumes for the Diffusively Corrected Lighthill-Whitham-Richards Traffic Model. In C. Cancès & P. Omnes (Hrsg.), Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017 (S. 189--197). Springer International Publishing. https://doi.org/10.1007/978-3-319-57394-6_21
- Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2017). Partition of unity interpolation using stable kernel-based techniques. APPLIED NUMERICAL MATHEMATICS, 116(SI), Article SI. https://doi.org/10.1016/j.apnum.2016.07.005
- Chalons, C., Rohde, C., & Wiebe, M. (2017). A finite volume method for undercompressive shock waves in two space dimensions. ESAIM Math. Model. Numer. Anal., 51(5), Article 5. https://doi.org/10.1051/m2an/2017027
- Chertock, A., Degond, P., & Neusser, J. (2017). An asymptotic-preserving method for a relaxation of the Navier-Stokes-Korteweg equations. JOURNAL OF COMPUTATIONAL PHYSICS, 335, 387–403. https://doi.org/10.1016/j.jcp.2017.01.030
- De Marchi, S., Idda, A., & Santin, G. (2017). A Rescaled Method for RBF Approximation. In G. E. Fasshauer & L. L. Schumaker (Hrsg.), Approximation Theory XV: San Antonio 2016 (S. 39--59). Springer International Publishing. https://doi.org/10.1007/978-3-319-59912-0_3
- De Marchi, S., Iske, A., & Santin, G. (2017). Image Reconstruction from Scattered Radon Data by Weighted Positive Definite Kernel Functions.
- Diaz Ramos, J. C., Dominguez Vazquez, M., & Kollross, A. (2017). Polar actions on complex hyperbolic spaces. Mathematische Zeitschrift, 287(3), Article 3. https://doi.org/10.1007/s00209-017-1864-5
- Dibak, C., Schmidt, A., Dürr, F., Haasdonk, B., & Rothermel, K. (2017). Server-assisted interactive mobile simulations for pervasive applications. 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), 111--120. https://doi.org/10.1109/PERCOM.2017.7917857
- Dombry, C., Engelke, S., & Oesting, M. (2017). Bayesian inference for multivariate extreme value distributions. Electron. J. Stat., 11(2), Article 2. https://doi.org/10.1214/17-EJS1367
- Escher, J., Gosselet, P., & Lienstromberg, C. (2017). A note on model reduction for microelectromechanical systems. Nonlinearity, 30(2), Article 2. https://doi.org/10.1088/1361-6544/aa4ff9
- Escher, J., & Lienstromberg, C. (2017). A survey on second-order free boundary value problems modelling MEMS with general permittivity profile. Discrete Contin. Dyn. Syst. Ser. S, 10(4), Article 4. https://doi.org/10.3934/dcdss.2017038
- Farooq, M., & Steinwart, I. (2017). An SVM-like Approach for Expectile Regression. Comput. Statist. Data Anal., 109, 159--181. https://doi.org/10.1016/j.csda.2016.11.010
- Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2017). A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension. J. Comput. Phys., 336, 347–374. https://doi.org/10.1016/j.jcp.2017.02.001
- Fehr, J., Grunert, D., Bhatt, A., & Hassdonk, B. (2017). A Sensitivity Study of Error Estimation in Reduced Elastic Multibody Systems. Proceedings of MATHMOD 2018, Vienna, Austria.
- Feistauer, M., Bartos, O., Roskovec, F., & Sändig, A.-M. (2017). Analysis of the FEM and DGM for an elliptic problem with a nonlinear Newton boundary condition. Proceeding of the EQUADIFF 17, 127–136. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/
- Feistauer, M., Roskovec, F., & Sändig, A.-M. (2017). Discontinuous Galerkin Method for an Elliptic Problem with Nonlinear Boundary Conditions in a Polygon. IMA, 00, 1–31. https://doi.org/10.1093/imanum/drx070
- Fetzer, M., & Scherer, C. W. (2017). Full‐block multipliers for repeated, slope‐restricted scalar nonlinearities. Int. J. Robust Nonlin., 27(17), Article 17. https://doi.org/10.1002/rnc.3751
- Fetzer, M., & Scherer, C. W. (2017). Absolute stability analysis of discrete time feedback interconnections. IFAC-PapersOnLine, 1, Article 1. https://doi.org/10.1016/j.ifacol.2017.08.757
- Fetzer, M., & Scherer, C. W. (2017). Zames-Falb Multipliers for Invariance. IEEE Control Systems Letters, 1(2), Article 2. https://doi.org/10.1109/LCSYS.2017.2718556
- Fetzer, M., Scherer, C. W., & Veenman, J. (2017). Invariance with dynamic multipliers. IEEE Trans. Autom. Control, 63(7), Article 7. https://doi.org/10.1109/TAC.2017.2762764
- Fetzer, M. (2017). From classical absolute stability tests towards a comprehensive robustness analysis [Dissertation, University of Stuttgart]. https://doi.org/10.18419/opus-9726
- Fukuizumi, R., Marzuola, J. L., Pelinovsky, D., & Schneider, G. (Hrsg.). (2017). Nonlinear partial differential equations on graphs. Abstracts from the workshop held June 18--24, 2017. Oberwolfach Rep., 14(2), Article 2.
- Funke, S., Mendel, T., Miller, A., Storandt, S., & Wiebe, M. (2017). Map Simplification with Topology Constraints: Exactly and in Practice. Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2017, Barcelona, Spain, Hotel Porta Fira, January 17-18, 2017., 185--196. https://doi.org/10.1137/1.9781611974768.15
- Gaspoz, F. D., Kreuzer, C., Siebert, K., & Ziegler, D. (2017). A convergent time-space adaptive $dG(s)$ finite element method for parabolic problems motivated by equal error distribution. In Submitted. https://arxiv.org/abs/1610.06814
- Gaspoz, F. D., Morin, P., & Veeser, A. (2017). A posteriori error estimates with point sources in fractional sobolev spaces. Numerical Methods for Partial Differential Equations, 33(4), Article 4. https://doi.org/10.1002/num.22065
- Geck, M. (2017). On the construction of semisimple Lie algebras and Chevalley groups. Proceedings of the American Mathematical Society, 145(8), Article 8. https://doi.org/10.1090/proc/13600
- Geck, M. (2017). Minuscule weights and Chevalley groups. Finite Simple Groups: Thirty Years of the Atlas and Beyond (Celebrating the Atlases and Honoring John Conway, November 2-5, 2015 at Princeton University), 694, 159--176. https://doi.org/10.1090/conm/694/13955
- Geck, M. (2017). James’ Submodule Theorem and the Steinberg Module. Symmetry, Integrability and Geometry: Methods and Applications, 13. https://doi.org/10.3842/sigma.2017.091
- Geck, M. (2017). On the modular composition factors of the Steinberg representation. Journal of Algebra, 475, 370--391. https://doi.org/10.1016/j.jalgebra.2015.11.005
- Geck, M., & Müller, J. (2017). Invariant bilinear forms on W-graph representations and linear algebra over integral domains. Algorithmic and experimental methods in algebra, geometry and number theory (eds. G. Böckle, W. Decker, G. Malle), 311–360. https://doi.org/10.1007/978-3-319-70566-8_13
- Giesselmann, J., Lattanzio, C., & Tzavaras, A. E. (2017). Relative Energy for the Korteweg Theory and Related Hamiltonian Flows in Gas Dynamics. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 223(3), Article 3. https://doi.org/10.1007/s00205-016-1063-2
- Giesselmann, J., & Pryer, T. (2017). Goal-oriented error analysis of a DG scheme for a second gradient elastodynamics model. In C. Cances & P. Omnes (Hrsg.), Finite Volumes for Complex Applications VIII-Methods and Theoretical Aspects (Bd. 199). http://www.springer.com/de/book/9783319573960
- Giesselmann, J., & Pryer, T. (2017). A posteriori analysis for dynamic model adaptation in convection-dominated problems. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 27(13), Article 13. https://doi.org/10.1142/S0218202517500476
- Giesselmann, J., & Tzavaras, A. E. (2017). Stability properties of the Euler-Korteweg system with nonmonotone pressures. Appl. Anal., 96(9), Article 9. https://doi.org/10.1080/00036811.2016.1276175
- Griesemer, M. (2017). On the dynamics of polarons in the strong-coupling limit. Rev. Math. Phys., 29(10), Article 10. https://doi.org/10.1142/S0129055X17500301
- Griesemer, M., Schmid, J., & Schneider, G. (2017). On the dynamics of the mean-field polaron in the high-frequency limit. Lett. Math. Phys., 107(10), Article 10. https://doi.org/10.1007/s11005-017-0969-4
- Gutt, R., Kohr, M., Mikhailov, S., & Wendland, W. L. (2017). On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman systems in Besov spaces on creased Lipschitz domains. Math. Meth. Appl. Sci., 18, 7780–7829. https://doi.org/10.1002/mma.4562
- Gutt, R., Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2017). On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 40(18), Article 18. https://doi.org/10.1002/mma.4562
- Haasdonk, B. (2017). Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction for Stationary and Instationary Problems. In P. Benner, A. Cohen, M. Ohlberger, & K. Willcox (Hrsg.), Model Reduction and Approximation: Theory and Algorithms (S. 65--136). SIAM, Philadelphia. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938
- Hahn, B. N. (2017). Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography. Sensing and Imaging, 18(10), Article 10. https://doi.org/10.1007/s11220-017-0159-6
- Hahn, B. N. (2017). A motion artefact study and locally deforming objects in computerized tomography. Inverse Problems, 33(11), Article 11. https://doi.org/10.1088/1361-6420/aa8d7b
- Hang, H., & Steinwart, I. (2017). A Bernstein-type Inequality for Some Mixing Processes and Dynamical Systems with an Application to Learning. Ann. Statist., 45, 708--743. https://doi.org/10.1214/16-AOS1465
- Harbrecht, H., Wendland, W. L., & Zorii, N. (2017). Riesz energy problems for strongly singular kernels. Math. Nachr. https://doi.org/10.1002/mana.201600024
- Heil, K., Moroianu, A., & Semmelmann, U. (2017). Killing tensors on tori. J. Geom. Phys., 117, 1--6. https://doi.org/10.1016/j.geomphys.2017.02.010
- Hintermüller, M., Langer, A., Rautenberg, C. N., & Wu, T. (2017). Adaptive regularization for reconstruction from subsampled data. WIAS Preprint No. 2379. http://www.wias-berlin.de/preprint/2379/wias_preprints_2379.pdf
- Hintermüller, M., Rautenberg, C. N., Wu, T., & Langer, A. (2017). Optimal Selection of the Regularization Function in a Weighted Total Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests. Journal of Mathematical Imaging and Vision, 1--19. https://link.springer.com/article/10.1007/s10851-017-0736-2
- Hänel, A., & Weidl, T. (2017). Spectral asymptotics for the Dirichlet Laplacian with a Neumann window via a Birman-Schwinger analysis of the Dirichlet-to-Neumann operator. Functional Analysis and Operator Theory for Quantum Physics, EMS Series of Congress Reports, J. Dittrich, et al. (Eds.), 315–352.
- Höllig, K. V., & Hörner, J. V. (Hrsg.). (2017). Aufgaben und Lösungen zur höheren Mathematik (S. xi, 533 Seiten) [Aufgabensammlung]. Springer Spektrum. http://deposit.d-nb.de/cgi-bin/dokserv?id=86f385b1e03e40a0a23a214a0c3c5f72&prov=M&dok_var=1&dok_ext=htm
- Kane, B. (2017). Using DUNE-FEM for Adaptive Higher Order Discontinuous Galerkin Methods for Two-phase Flow in Porous Media. Archive of Numerical Software, 5(1), Article 1.
- Kane, B., Klöfkorn, R., & Gersbacher, C. (2017). hp--Adaptive Discontinuous Galerkin Methods for Porous Media Flow. International Conference on Finite Volumes for Complex Applications, 447--456.
- Kohr, M., Medkova, D., & Wendland, W. L. (2017). On the Oseen-Brinkman flow around an (m-1)-dimensional obstacle. Monatshefte für Mathematik, 483, 269–302. https://doi.org/MOFM-D16-00078
- Kohr, M., Mikhailov, S., & Wendland, W. L. (2017). Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman systems in Lipschitz domains on compact Riemannian mani. J of Mathematical Fluid Mechanics, 19, 203–238.
- Kollross, A. (2017). Hyperpolar actions on reducible symmetric spaces. Transformation Groups, 22(1), Article 1. https://doi.org/10.1007/s00031-016-9384-7
- Kovarik, H., Ruszkowski, B., & Weidl, T. (2017). Spectral estimates for the Heisenberg Laplacian on cylinders. Functional Analysis and Operator Theory for Quantum Physics, EMS Series of Congress Reports, J. Dittrich, et al. (eds.), 433–446.
- Kutter, M., Rohde, C., & Sändig, A.-M. (2017). Well-posedness of a two scale model for liquid phase epitaxy with elasticity. Contin. Mech. Thermodyn., 29(4), Article 4. https://doi.org/10.1007/s00161-015-0462-1
- Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., Wittwar, D., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2017). Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1759
- Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Wittwar, D., Santin, G., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2017). Datasets and executables of data-driven uncertainty quantification benchmark in carbon dioxide storage. https://doi.org/10.5281/zenodo.933827
- Köppel, M., Kröker, I., & Rohde, C. (2017). Intrusive Uncertainty Quantification for Hyperbolic-Elliptic Systems Governing Two-Phase Flow in Heterogeneous Porous Media. Comput. Geosci., 21, 807–832. https://doi.org/10.1007/s10596-017-9662-z
- Köppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2017). Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods. University of Stuttgart.
- Langer, A. (2017). Automated Parameter Selection in the L1-L2-TV Model for Removing Gaussian Plus Impulse Noise. Inverse Problems, 33, 41. http://people.ricam.oeaw.ac.at/a.langer/publications/L1L2TVm.pdf
- Langer, A. (2017). Automated Parameter Selection for Total Variation Minimization in Image Restoration. Journal of Mathematical Imaging and Vision, 57, 239--268. https://doi.org/10.1007/s10851-016-0676-2
- Lienstromberg, C. (2017). Well-posedness of a quasilinear evolution problem modelling MEMS with general permittivity. J. Evol. Equ., 17(4), Article 4. https://doi.org/10.1007/s00028-016-0375-x
- Maboudi Afkham, B., & Hesthaven, J. (2017). Structure Preserving Model Reduction of Parametric Hamiltonian Systems. SIAM Journal on Scientific Computing, 39(6), Article 6. https://doi.org/10.1137/17M1111991
- Martini, I., Rozza, G., & Haasdonk, B. (2017). Certified Reduced Basis Approximation for the Coupling of Viscous and Inviscid Parametrized Flow Models. Journal of Scientific Computing. https://doi.org/10.1007/s10915-017-0430-y
- Maz’ya, V., Natroshvili, D., Shargorodsky, E., & Wendland, W. L. (Hrsg.). (2017). Recent Trends in Operator Theory and Partial Differential Equations. The Roland Duduchava Anniverary Volume (No. 258; Nummer 258). Birkhäuser/Springer International.
- Minbashian, H. (2017). Wavelet-based Multiscale Methods for Numerical Solution of Hyperbolic Conservation Laws. Amirkabir University of Technology (Tehran 11/2017 Polytechnic), Tehran, Iran.
- Minbashian, H., Adibi, H., & Dehghan, M. (2017). On Resolution of Boundary Layers of Exponential Profile with Small Thickness Using an Upwind Method in IGA.
- Minbashian, H., Adibi, H., & Dehghan, M. (2017). An adaptive wavelet space-time SUPG method for hyperbolic conservation laws. Numerical Methods for Partial Differential Equations, 33(6), Article 6. https://doi.org/10.1002/num.22180
- Minbashian, H., Adibi, H., & Dehghan, M. (2017). An Adaptive Space-Time Shock Capturing Method with High Order Wavelet Bases for the System of Shallow Water Equations. International Journal of Numerical Methods for Heat & Fluid Flow.
- Oesting, M., Schlather, M., & Friederichs, P. (2017). Statistical post-processing of forecasts for extremes using bivariate Brown-Resnick processes with an application to wind gusts. Extremes, 20(2), Article 2. https://doi.org/10.1007/s10687-016-0277-x
- Pelinovsky, D., & Schneider, G. (2017). Bifurcations of standing localized waves on periodic graphs. Ann. Henri Poincaré, 18(4), Article 4.
- Rösinger, C. A., & Scherer, C. W. (2017). Structured Controller Design With Applications to Networked Systems. Proc. 56th IEEE Conf. Decision and Control. https://doi.org/10.1109/CDC.2017.8264365
- Santin, G., & Haasdonk, B. (2017). Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation. Dolomites Research Notes on Approximation, 10, 68--78. http://www.emis.de/journals/DRNA/9-2.html
- Santin, G., & Haasdonk, B. (2017). Non-symmetric kernel greedy interpolation.
- Santin, G., & Haasdonk, B. (2017). Greedy Kernel Approximation for Sparse Surrogate Modelling. University of Stuttgart.
- Schanz, M., Ketteler, M., Heck, M., Dippon, J., Alscher, MD., & Kimmel, M. (2017). Impact of an in-Hospital Patient Education Program on Choice of Renal Replacement Modality in Unplanned Dialysis Initiation. Kidney & blood pressure research, 42(5), Article 5. https://doi.org/10.1159/000484531
- Schanz, M., Schaaf, L., Dippon, J., Biegger, D., Fritz, P., Alscher, MD., & Kimmel, M. (2017). Renal effects of metallothionein induction by zinc in vitro and in vivo. BMC Nephrol, 2017 Mar 16;18(1), 91. https://doi.org/10.1186/s12882-017-0503-z
- Schmid, J., & Griesemer, M. (2017). Well-posedness of non-autonomous linear evolution equations in uniformly convex spaces. Math. Nachr., 290(2–3), Article 2–3. https://doi.org/10.1002/mana.201500052
- Schmidt, A., & Haasdonk, B. (2017). Data-driven surrogates of value functions and applications to feedback control for dynamical systems. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1742
- Schmidt, A., & Haasdonk, B. (2017). Reduced basis approximation of large scale parametric algebraic Riccati equations. ESAIM: Control, Optimisation and Calculus of Variations. https://doi.org/10.1051/cocv/2017011
- Schneider, G., & Uecker, H. (2017). Nonlinear PDEs. A dynamical systems approach. In Grad. Stud. Math. (Bd. 182, S. xiii + 575). Providence, RI: American Mathematical Society (AMS).
- Steinwart, I. (2017). A Short Note on the Comparison of Interpolation Widths, Entropy Numbers, and Kolmogorov Widths. J. Approx. Theory, 215, 13--27. https://doi.org/10.1016/j.jat.2016.11.006
- Steinwart, I. (2017). Representation of Quasi-Monotone Functionals by Families of Separating Hyperplanes. Math. Nachr., 290, 1859--1883. https://doi.org/10.1002/mana.201500350
- Steinwart, I. (2017). A Short Note on the Comparison of Interpolation Widths, Wntropy Numbers, and Kolmogorov Widths. J. Approx. Theory, 215, 13--27.
- Steinwart, I., Sriperumbudur, B. K., & Thomann, P. (2017). Adaptive Clustering Using Kernel Density Estimators. Fakultät für Mathematik und Physik, Universität Stuttgart.
- Steinwart, I., & Thomann, P. (2017). liquidSVM: A Fast and Versatile SVM Package. Fakultät für Mathematik und Physik, Universität Stuttgart.
- Tempel, P., Schmidt, A., Haasdonk, B., & Pott, A. (2017). Application of the Rigid Finite Element Method to the Simulation of Cable-Driven Parallel Robots. University of Stuttgart.
- Thomann, P., Steinwart, I., Blaschzyk, I., & Meister, M. (2017). Spatial Decompositions for Large Scale SVMs. In A. Singh & J. Zhu (Hrsg.), Proceedings of Machine Learning Research Volume 54: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics 2017 (S. 1329--1337).
- Wirth, J. (2017). Regular singular problems for hyperbolic systems and their asymptotic integration. In New trends in analysis and interdisciplinary applications (S. 553--561). Birkhäuser/Springer, Cham. https://doi.org/10.1007/978-3-319-48812-7_70
- Wirth, J. (2017). On t-dependent hyperbolic systems. Part 2. J. Math. Anal. Appl., 448(1), Article 1. https://doi.org/10.1016/j.jmaa.2016.11.026
- Wittwar, D., & Haasdonk, B. (2017). On uncoupled separable matrix-valued kernels. University of Stuttgart.
- Wittwar, D., Santin, G., & Haasdonk, B. (2017). Interpolation with uncoupled separable matrix-valued kernels. [ArXiv preprint 1807.09111, Accepted for publications in Dolomites Res. Notes Approx.].
- Wittwar, D., Schmidt, A., & Haasdonk, B. (2017). Reduced Basis Approximation for the Discrete-time Parametric Algebraic Riccati Equation. University of Stuttgart.
2016
- Alkämper, M., Dedner, A., Klöfkorn, R., & Nolte, M. (2016). The DUNE-ALUGrid Module. Archive of Numerical Software, 4(1), Article 1. https://doi.org/10.11588/ans.2016.1.23252
- Alla, A., Schmidt, A., & Haasdonk, B. (2016). Model order reduction approaches for infinite horizon optimal control problems via the HJB equation. University of Stuttgart. https://arxiv.org/abs/1607.02337
- Allerhand, L., Gershon., E., & Shaked, U. (2016). Robust state-feedback control of stochastic state-multiplicative discrete-time linear switched systems with dwell time. Int. J. Robust Nonlin., 26(2), Article 2. https://doi.org/10.1002/rnc.3301
- Amsallem, D., & Haasdonk, B. (2016). PEBL-ROM: Projection-Error Based Local Reduced-Order Models. AMSES, Advanced Modeling and Simulation in Engineering Sciences, 3(6), Article 6. https://doi.org/10.1186/s40323-016-0059-7
- Antoulas, A. C., Haasdonk, B., & Peherstorfer, B. (2016). MORML 2016 Book of Abstracts. University of Stuttgart.
- Apprich, C., Höllig, K., Hörner, J., & Reif, U. (2016). Collocation with WEB--Splines. Advances in Computational Mathematics, 42(4), Article 4. https://doi.org/10.1007/s10444-015-9444-x
- Barseghyan, D., Exner, P., Kovarik, H., & Weidl, T. (2016). Semiclassical bounds in magnetic bottles. Reviews in Mathematical Physics, 28(1), Article 1. https://doi.org/10.1142/S0129055X16500021
- Barth, A., Bürger, R., Kröker, I., & Rohde, C. (2016). Computational uncertainty quantification for a clarifier-thickener model with several random perturbations: A hybrid stochastic Galerkin approach. Computers & Chemical Engineering, 89, 11-- 26. http://dx.doi.org/10.1016/j.compchemeng.2016.02.016
- Barth, A., & Fuchs, F. G. (2016). Uncertainty quantification for hyperbolic conservation laws with flux coefficients given by spatiotemporal random fields. SIAM J. Sci. Comput., 38(4), Article 4. https://doi.org/10.1137/15M1027723
- Barth, A., & Kröker, I. (2016). Finite volume methods for hyperbolic partial differential equations with spatial noise. In Springer Proceedings in Mathematics and Statistics: Bd. submitted. Springer International Publishing.
- Barth, A., Moreno-Bromberg, S., & Reichmann, O. (2016). A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate Setting. Comp. Economics, 47(3), Article 3. https://doi.org/10.1007/s10614-015-9502-y
- Barth, A., Schwab, C., & Sukys, J. (2016). Multilevel Monte Carlo simulation of statistical solutions to the Navier-Stokes equations. In Monte Carlo and quasi-Monte Carlo methods (Bd. 163, S. 209--227). Springer, Cham. https://doi.org/10.1007/978-3-319-33507-0_8
- Barth, A., & Stein, A. (2016). Approximation and simulation of infinite-dimensional Lévy processes. http://arxiv.org/abs/1612.05541
- Bastian, P., Engwer, C., Fahlke, J., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Milk, R., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., & Turek, S. (2016). Advances Concerning Multiscale Methods and Uncertainty Quantification in EXA-DUNE. In H.-J. Bungartz, P. Neumann, & W. E. Nagel (Hrsg.), Software for Exascale Computing -- SPPEXA 2013--2015 (S. 25--43). Springer. https://doi.org/10.1007/978-3-319-40528-5_2
- Bastian, P., Engwer, C., Fahlke, J., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Milk, R., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., & Turek, S. (2016). Hardware-Based Efficiency Advances in the EXA-DUNE Project. In H.-J. Bungartz, P. Neumann, & W. E. Nagel (Hrsg.), Software for Exascale Computing -- SPPEXA 2013--2015 (S. 3--23). Springer. https://doi.org/10.1007/978-3-319-40528-5_1
- Baur, U., Benner, P., Haasdonk, B., Himpe, C., Maier, I., & Ohlberger, M. (2016). Comparison of methods for parametric model order reduction of instationary problems. In P. Benner, A. Cohen, M. Ohlberger, & K. Willcox (Hrsg.), Model Reduction and Approximation for Complex Systems. Birkhäuser Publishing. https://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-01.pdf
- Betancourt, F., & Rohde, C. (2016). Finite-Volume Schemes for Friedrichs Systems with Involutions. App. Math. Comput., 272, Part 2, 420–439. https://doi.org/10.1016/j.amc.2015.03.050
- Bhatt, A. (2016). Structure-preserving Finite Difference Methods for Linearly Damped Differential Equations. University of Central Florida.
- Bhatt, A., & Moore, B. E. (2016). Structure-preserving Exponential Runge-Kutta Methods. SIAM J. Sci Comp.
- Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2016). Approximating basins of attraction for dynamical systems via stable radial bases. AIP Conf. Proc. https://doi.org/10.1063/1.4952177
- Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2016). Partition of unity interpolation using stable kernel-based techniques. Applied Numerical Mathematics. https://doi.org/10.1016/j.apnum.2016.07.005
- Chertock, A., Degond, P., & Neusser, J. (2016). An Asymptotic-Preserving Method for a Relaxation of the Navier-Stokes-Korteweg Equations. Journal of Computational Physics, 335, 387–403. http://arxiv.org/abs/1512.04228
- Colombo, R. M., Guerra, G., & Schleper, V. (2016). The compressible to incompressible limit of 1D Euler equations: the non-smooth case. Archive for Rational Mechanics and Analysis, 219(2), Article 2. https://doi.org/10.1007/s00205-015-0904-8
- Colombo, R. M., LeFloch, P. G., & Rohde, C. (2016). Hyperbolic techniques in Modelling, Analysis and Numerics. Oberwolfach Reports, 13, 1683–1751. https://doi.org/10.4171/OWR/2016/30
- Colombo, R. M., Guerra, G., & Schleper, V. (2016). The Compressible to Incompressible Limit of One Dimensional Euler Equations: The Non Smooth Case. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 219(2), Article 2. https://doi.org/10.1007/s00205-015-0904-8
- Dedner, A., & Giesselmann, J. (2016). A posteriori analysis of fully discrete method of lines DG schemes for systems of conservation laws. SIAM J. Numer. Anal., 54(6), Article 6. http://epubs.siam.org/toc/sjnaam/54/6
- Diehl, D., Kremser, J., Kröner, D., & Rohde, C. (2016). Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions. Appl. Math. Comput., 272(2), Article 2. https://doi.org/10.1016/j.amc.2015.09.080
- Diehl, D., Kremser, J., Kröner, D., & Rohde, C. (2016). Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions. Appl. Math. Comput., 272(2), Article 2. https://doi.org/10.1016/j.amc.2015.09.080
- Dihlmann, M., & Haasdonk, B. (2016). A reduced basis Kalman filter for parametrized partial differential equations. ESAIM: COCV, 22(3), Article 3. https://doi.org/10.1051/cocv/2015019
- Dragomirescu, F. I., Eisenschmidt, K., Rohde, C., & Weigand, B. (2016). Perturbation solutions for the finite radially symmetric Stefan problem. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 104, 386–395. https://doi.org/10.1016/j.ijthermalsci.2016.01.019
- Dragomirescu, I., Eisenschmidt, K., Rohde, C., & Weigand, B. (2016). Perturbation solutions for the finite radially symmetric Stefan problem. Inter. J. Thermal Sci., 104, 386–395. https://doi.org/10.1016/j.ijthermalsci.2016.01.019
- Dumbser, M., Gassner, G., Rohde, C., & Roller, S. (2016). Preface to the special issue ``Recent Advances in Numerical Methods for Hyperbolic Partial Differential Equations’’. APPLIED MATHEMATICS AND COMPUTATION, 272(2), Article 2. https://doi.org/10.1016/j.amc.2015.11.023
- Düll, W.-P., Hermann, A., Schneider, G., & Zimmermann, D. (2016). Justification of the 2D NLS equation for a fourth order nonlinear wave equation - quadratic resonances do not matter much in case of analytic initial conditions. J. Math. Anal. Appl., 436(2), Article 2.
- Düll, W.-P., Kashani, K. S., & Schneider, G. (2016). The validity of Whitham’s approximation for a Klein-Gordon-Boussinesq model. SIAM J. Math. Anal., 48(6), Article 6. https://doi.org/10.1137/16M1071687
- Düll, W.-P., Kashani, K. S., Schneider, G., & Zimmermann, D. (2016). Attractivity of the Ginzburg-Landau mode distribution for a pattern forming system with marginally stable long modes. J. Differ. Equations, 261(1), Article 1.
- Düll, W.-P., Schneider, G., & Wayne, C. E. (2016). Justification of the nonlinear Schrödinger equation for the evolution of gravity driven 2D surface water waves in a canal of finite depth. Arch. Ration. Mech. Anal., 220(2), Article 2. https://doi.org/10.1007/s00205-015-0937-z
- Escher, J., & Lienstromberg, C. (2016). Finite-time singularities of solutions to microelectromechanical systems with general permittivity. Ann. Mat. Pura Appl. (4), 195(6), Article 6. https://doi.org/10.1007/s10231-016-0549-8
- Escher, J., & Lienstromberg, C. (2016). A qualitative analysis of solutions to microelectromechanical systems with curvature and nonlinear permittivity profile. Comm. Partial Differential Equations, 41(1), Article 1. https://doi.org/10.1080/03605302.2015.1105259
- Fetzer, M., & Scherer, C. W. (2016). A General Integral Quadratic Constraints Theorem with Applications to a Class of Sampled-Data Systems. SIAM J. Contr. Optim., 54(3), Article 3. https://doi.org/10.1137/140985482
- Fetzer, M., & Scherer, C. W. (2016). Stability and Performance Analysis on Sobolev Spaces. 55th IEEE Conf. Decision and Control, 7264–7269. https://doi.org/10.1109/CDC.2016.7799390
- Fritzen, F., Haasdonk, B., Ryckelynck, D., & Schöps, S. (2016). An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem [Arxiv Report]. University of Stuttgart. https://arxiv.org/abs/1610.05029
- Garmatter, D., Haasdonk, B., & Harrach, B. (2016). A reduced Landweber Method for Nonlinear Inverse Problems. Inverse Problems, 32(3), Article 3. http://dx.doi.org/10.1088/0266-5611/32/3/035001
- Gaspoz, F. D., Heine, C.-J., & Siebert, K. G. (2016). Optimal Grading of the Newest Vertex Bisection and H1-Stability of the L2-Projection. IMA Journal of Numerical Analysis, 36(3), Article 3. https://doi.org/10.1093/imanum/drv044
- Geveler, M., Reuter, B., Aizinger, V., Göddeke, D., & Turek, S. (2016). Energy efficiency of the simulation of three-dimensional coastal ocean circulation on modern commodity and mobile processors -- A case study based on the Haswell and Cortex-A15 microarchitectures. Computer Science -- Research and Development, 31(4), Article 4. https://doi.org/10.1007/s00450-016-0324-5
- Giesselmann, J. (2016). Relative entropy based error estimates for discontinuous Galerkin schemes. Bull. Braz. Math. Soc. (N.S.), 47(1), Article 1. https://doi.org/10.1007/s00574-016-0144-z
- Giesselmann, J., & LeFloch, P. G. (2016). Formulation and convergence of the finite volume method for conservation laws on spacetimes with boundary. ArXiv. http://arxiv.org/abs/1607.03944
- Giesselmann, J., & Pryer, T. (2016). Reduced relative entropy techniques for a posteriori analysis of multiphase problems in elastodynamics. IMA J. Numer. Anal., 36(4), Article 4. http://imajna.oxfordjournals.org/content/36/4/1685
- Giesselmann, J., & Pryer, T. (2016). Reduced relative entropy techniques for a priori analysis of multiphase problems in elastodynamics. BIT Numerical Mathematics, 56, 99-- 127. https://doi.org/10.1007/s10543-015-0560-2
- Gilg, S., Pelinovsky, D., & Schneider, G. (2016). Validity of the NLS approximation for periodic quantum graphs. NoDEA, Nonlinear Differ. Equ. Appl., 23(6), Article 6.
- Gisselmann, J., & Pryer, T. (2016). Reduced relative entropy techniques for a posteriori analysis of multiphase problems in elastodynamics. IMA JOURNAL OF NUMERICAL ANALYSIS, 36(4), Article 4. https://doi.org/10.1093/imanum/drv052
- Gorodski, C., & Kollross, A. (2016). Some remarks on polar actions. Annals of global analysis and geometry, 49(1), Article 1. https://doi.org/10.1007/s10455-015-9479-8
- Guerra, G., & Schleper, V. (2016). A coupling between a 1D compressible-incompressible limit and the 1D p-system in the non smooth case. Bulletin of the Brazilian Mathematical Society, New Series, 47(1), Article 1. https://doi.org/10.1007/s00574-016-0146-x
- Gutt, R., Kohr, M., Pintea, C., & Wendland, W. L. (2016). On the transmission problems for the Oseen and Brinkman systems on Lipschitz domains in compact Riemannian manifolds. Math. Nachr, 289, 471–484.
- Hahn, B. N. (2016). Null space and resolution in dynamic computerized tomography. Inverse Problems, 32(2), Article 2. https://doi.org/10.1088/0266-5611/32/2/025006
- Hahn, B. N., & Quinto, E. T. (2016). Detectable singularities from dynamic Radon data. SIAM J. Imaging Sciences, 9(3), Article 3. https://doi.org/10.1137/16M1057917
- Hang, H., Feng, Y., Steinwart, I., & Suykens, J. A. K. (2016). Learning theory estimates with observations from general stationary stochastic processes. Neural Computation, 28, 2853--2889. https://doi.org/10.1162/NECO_a_00870
- Harbrecht, H., Wendland, W. L., & Zorii, N. (2016). Rapid solution of minimal Riesz energy problems. Numer. Methods Partial Diff. Equ., 32, 1535–1552.
- Holicki, T., & Scherer, C. W. (2016). Controller synthesis for distributed systems over undirected graphs. 55th IEEE Conf. Decision and Control, 5238–5244. https://doi.org/10.1109/CDC.2016.7799071
- Hänel, A., & Weidl, T. (2016). Eigenvalue asymptotics for an elastic strip and an elastic plate with a crack. Quarterly Journal of Mechanics and Applied Mathematics, 69(4), Article 4. https://doi.org/10.1093/qjmam/hbw009
- Kabil, B., & Rodrigues, M. (2016). Spectral validation of the Whitham equations for periodic waves of lattice dynamical systems. Journal of Differential Equations, 260(3), Article 3. https://doi.org/10.1016/j.jde.2015.10.025
- Kabil, B., & Rohde, C. (2016). Persistence of undercompressive phase boundaries for isothermal Euler equations including configurational forces and surface tension. Math. Meth. Appl. Sci., 39(18), Article 18. https://doi.org/10.1002/mma.3926
- Kohr, M., de Cristoforis, L., Mikhailov, S., & Wendland, W. L. (2016). Integral potential method for transmission problem with Lipschitz interface in R3 for the Stokes and Darcy-Forchheimer-Brinkman PED systems. ZAMP, 67:116, 1–30.
- Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2016). On the Robin transmission boundary value problem for the nonlinear Darcy-Forchheimer-Brinkman and Navier-Stokes system. J. Math. Fluid Mechanics, 18, 293–329.
- Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2016). Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman systems in Lipschitz domains on compact Riemannian manifolds. Journal of Mathematical Fluid Dynamics, DOI 10.1007/s 00021-16-0273-6.
- Kohr, M., Pintea, C., & Wendland, W. L. (2016). Poisson transmission problems for L^infty perturbations of the Stokes system on Lipschitz domains on compact Riemannian manifolds. J. Dyn. Diff. Equations, DOI 110.1007/s10884-014-9359-0.
- Kohr, M., de Cristoforis, M. L., & Wendland, W. L. (2016). On the Robin-Transmission Boundary Value Problems for the Nonlinear Darcy-Forchheimer-Brinkman and Navier-Stokes Systems. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 18(2), Article 2. https://doi.org/10.1007/s00021-015-0236-3
- Köppel, M., & Rohde, C. (2016). Uncertainty Quantification for Two-Phase Flow in Heterogeneous Porous Media. PAMM Proc. Appl. Math. Mech., 16(1), Article 1. https://doi.org/10.1002/pamm.201610363
- Lienstromberg, C. (2016). On qualitative properties of solutions to microelectromechanical systems with general permittivity. Monatsh. Math., 179(4), Article 4. https://doi.org/10.1007/s00605-015-0744-5
- List, F., & Radu, F. A. (2016). A study on iterative methods for solving Richards’ equation. COMPUTATIONAL GEOSCIENCES, 20(2), Article 2. https://doi.org/10.1007/s10596-016-9566-3
- Magiera, J., Rohde, C., & Rybak, I. (2016). A hyperbolic-elliptic model problem for coupled surface-subsurface flow. Transp. Porous Media, 114, 425–455. https://doi.org/10.1007/S11242-015-0548-Z
- Meister, M., & Steinwart, I. (2016). Optimal Learning Rates for Localized SVMs. J. Mach. Learn. Res., 17, 1–44.
- Nguyen Tien, H., Scherer, C. W., Scherpen, J. M. A., & Müller, V. (2016). Linear Parameter Varying Control of Doubly Fed Induction Machines. IEEE Trans. Ind. Electron., 63(1), Article 1. https://doi.org/10.1109/TIE.2015.2465895
- Ostrowski, L., Ziegler, B., & Rauhut, G. (2016). Tensor decomposition in potential energy surface representations. The Journal of Chemical Physics, 145(10), Article 10. https://doi.org/10.1063/1.4962368
- Redeker, M., & Haasdonk, B. (2016). A POD-EIM reduced two-scale model for precipitation in porous media. MCMDS, Mathematical and Computer Modelling of Dynamical Systems. https://doi.org/10.1080/13873954.2016.1198384
- Redeker, M., Pop, I. S., & Rohde, C. (2016). Upscaling of a Tri-Phase Phase-Field Model for Precipitation in Porous Media. IMA J. Appl. Math., 81(5), 898–939. https://doi.org/10.1093/imamat/hxw023
- Rossi, E., & Schleper, V. (2016). Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions. ESAIM Math. Model. Numer. An., 50(2), Article 2. https://doi.org/10.1051/m2an/2015050
- Rybak, I., & Magiera, J. (2016). Decoupled schemes for free flow and porous medium systems. In T. D. et al. (Hrsg.), Domain Decomposition Methods in Science and Engineering XXII (Bd. 104, S. 613--621). Springer. https://doi.org/10.1007/978-3-319-18827-0\_54
- Santin, G. (2016). Approximation in kernel-based spaces, optimal subspaces and approximation of eigenfunction [Doctoral School in Mathematical Sciences, University of Padova]. http://paduaresearch.cab.unipd.it/9186/
- Santin, G., & Schaback, R. (2016). Approximation of eigenfunctions in kernel-based spaces. ADVANCES IN COMPUTATIONAL MATHEMATICS, 42(4), Article 4. https://doi.org/10.1007/s10444-015-9449-5
- Scherer, C. W. (2016). Lossless $H_ınfty$-synthesis for 2D systems (special issue JCW). Syst. Control Lett., 95, 25–35. https://doi.org/10.1016/j.sysconle.2016.02.011
- Schleper, V. (2016). A HLL-type Riemann solver for two-phase flow with surface forces and phase transitions. Appl. Numer. Math., 108, 256–270. https://doi.org/10.1016/j.apnum.2015.12.010
- Schmidt, A., & Haasdonk, B. (2016). Reduced basis method for H2 optimal feedback control problems. IFAC-PapersOnLine, 49(8), Article 8. http://dx.doi.org/10.1016/j.ifacol.2016.07.462
- Schneider, G. (2016). Validity and non-validity of the nonlinear Schrödinger equation as a model for water waves. In Lectures on the theory of water waves. Papers from the talks given at the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, July -- August, 2014 (S. 121--139). Cambridge: Cambridge University Press.
- Sharanya, V., Raja Sekhar, G. P., & Rohde, C. (2016). Bed of polydisperse viscous spherical drops under thermocapillary effects. Z. Angew. Math. Phys., 67(4), Article 4. https://doi.org/10.1007/s00033-016-0699-y
- Stein, A. (2016). Exakte Simulation von Optionspreisen und Sensitivitäten unter stochastischer Volatilität [Master Thesis].
- Steinwart, I., Thomann, P., & Schmid, N. (2016). Learning with Hierarchical Gaussian Kernels. Fakultät für Mathematik und Physik, Universität Stuttgart.
- Trottemant, E. J., Mazo, M., & Scherer, C. W. (2016). Synthesis of Robust Piecewise Affine Output-Feedback Strategies. J. Guid. Control Dynam., 39(7), Article 7. https://doi.org/10.2514/1.G001343
- Trottemant, E. J., Scherer, C. W., & Mazo, M. (2016). Optimality of robust disturbance-feedback strategies. Int. J. Robust Nonlin., 26(7), Article 7. https://doi.org/10.1002/rnc.3360
- Veenman, J., Lahr, M., & Scherer, C. W. (2016). Robust controller synthesis with unstable weights. 55th IEEE Conf. Decision and Control, 2390–2395. https://doi.org/10.1109/CDC.2016.7798620
- Veenman, J., Scherer, C. W., & Köroglu, H. (2016). Robust stability and performance analysis with integral quadratic constraints. Eur. J. Control, 31, 1–32. https://doi.org/10.1016/j.ejcon.2016.04.004
2015
- Allerhand, L. I. (2015). Stability of adaptive control in the presence of input disturbances and $H_ınfty$ performance. IFAC-PapersOnLine, 48(14), Article 14. https://doi.org/10.1016/j.ifacol.2015.09.437
- Allerhand, L. I., Gershon, E., & Shaked, U. (2015). State-feedback Control of Stochastic Discrete-time Linear Switched Systems with Dwell Time. Eur. Control Conf., 452–457. https://doi.org/10.1109/ECC.2015.7330585
- Allerhand, L. I., & Shaked, U. (2015). Soft Controller Switching with Guaranteed $H_ınfty$ Performance. IFAC-PapersOnLine, 48(11), Article 11. https://doi.org/10.1016/j.ifacol.2015.09.296
- Amsallem, D., Farhat, C., & Haasdonk, B. (2015). Special Issue on Model Reduction. IJNME, International Journal of Numerical Methods in Engineering, 102(5), Article 5. https://doi.org/10.1002/nme.4889
- Amsallem, D., Farhat, C., & Haasdonk, B. (2015). Editorial: Special Issue on Model Reduction. IJNME, International Journal of Numerical Methods in Engineering, 102(5), Article 5. https://doi.org/10.1002/nme.4889
- Amsallem, D., & Haasdonk, B. (2015). PEBL-ROM: Projection-Error Based Local Reduced-Order Models [SimTech Preprint]. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1436
- Burkovska, O., Haasdonk, B., Salomon, J., & Wohlmuth, B. (2015). Reduced basis methods for pricing options with the Black-Scholes and Heston model. SIAM journal on Financial Mathematics (SIFIN), 6(1), Article 1. https://doi.org/10.1137/140981216
- Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2015). RBF approximation of large datasets by partition of unity and local stabilization. In J. Vigo-Aguiar (Hrsg.), CMMSE 2015 : Proceedings of the 15th International Conference on Mathematical Methods in Science and Engineering (S. 317--326).
- Chirilus-Bruckner, M., Düll, W.-P., & Schneider, G. (2015). NLS approximation of time oscillatory long waves for equations with quasilinear quadratic terms. Math. Nachr., 288(2–3), Article 2–3. https://doi.org/10.1002/mana.201200325
- De Marchi, S., & Santin, G. (2015). Fast computation of orthonormal basis for RBF spaces through Krylov space methods. BIT Numerical Mathematics, 55(4), Article 4. https://doi.org/10.1007/s10543-014-0537-6
- Dihlmann, M., & Haasdonk, B. (2015). A reduced basis Kalman filter for parametrized partial differential equations. ESAIM: Control, Optimisation and Calculus of Variations. https://doi.org/10.1051/cocv/2015019
- Dihlmann, M. A., & Haasdonk, B. (2015). Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems. COAP, Computational Optimization and Applications, 60(3), Article 3. https://doi.org/DOI: 10.1007/s10589-014-9697-1
- do Nascimento, W. N., & Wirth, J. (2015). Wave equations with mass and dissipation. Adv. Differential Equations, 20(7–8), Article 7–8. http://projecteuclid.org/euclid.ade/1431115712
- Garmatter, D., Haasdonk, B., & Harrach, B. (2015). A reduced Landweber Method for Nonlinear Inverse Problems. University of Stuttgart.
- Geck, M. (2015). On Kottwitz’ conjecture for twisted involutions. Journal of Lie Theory, 25(2), Article 2. https://www.heldermann.de/JLT/JLT25/JLT252/jlt25019.htm
- Geck, M. (2015). Eigenvalues of Real Symmetric Matrices. The American Mathematical Monthly, 122(5), Article 5. https://doi.org/10.4169/amer.math.monthly.122.5.482
- Geck, M., & Bonnafe, C. (2015). Hecke algebras with unequal parameters and Vogan’s left cell invariants. Representations of reductive groups. In Honor of the 60th birthday of David A. Vogan, Jr (eds. M. Nevins and P. Trapa), 312, 173--188. https://doi.org/10.1007/978-3-319-23443-4_6
- Geck, M., & Halls, A. (2015). On the Kazhdan-Lusztig cells in type E8. Mathematics of Computation, 84(296), Article 296. https://doi.org/10.1090/mcom/2963
- Gershon, E., Shaked, U., & Allerhand, L. I. (2015). Stochastic Linear Systems: Robust $H_ınfty$ Control via Vertex-dependent Approach. 23rd Med. Conf. Control and Automation, 638–643. https://doi.org/10.1109/MED.2015.7158818
- Gerth, D., Hahn, B. N., & Ramlau, R. (2015). The method of the approximate inverse for atmospheric tomography. Inverse Problems, 31(6), Article 6. https://doi.org/10.1088/0266-5611/31/6/065002
- Giesselmann, J. (2015). Relative entropy in multi-phase models of 1d elastodynamics: Convergence of a non-local to a local model. JOURNAL OF DIFFERENTIAL EQUATIONS, 258(10), Article 10. https://doi.org/10.1016/j.jde.2015.01.047
- Giesselmann, J. (2015). Low Mach asymptotic preserving scheme for the Euler-Korteweg model. IMA J. Numer. Anal., 35(2), Article 2. https://doi.org/10.1093/imanum/dru022
- Giesselmann, J. (2015). Entropy as a fundamental principle in hyperbolic conservation laws and related models [Habilitationsschrift].
- Giesselmann, J., Makridakis, C., & Pryer, T. (2015). A posteriori analysis of discontinuous Galerkin schemes for systems of hyperbolic conservation laws. SIAM J. Numer. Anal., 53, 1280--1303. http://dx.doi.org/10.1137/140970999
- Giesselmann, J., & Pryer, T. (2015). ENERGY CONSISTENT DISCONTINUOUS GALERKIN METHODS FOR A QUASI-INCOMPRESSIBLE DIFFUSE TWO PHASE FLOW MODEL. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 49(1), Article 1. https://doi.org/10.1051/m2an/2014033
- Grosan, T., Kohr, M., & Wendland, W. L. (2015). Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains. Math. Meth. Appl. Sciences, 38, 3615–3628. https://doi.org/10.1002/mma3302
- Gugat, M., Herty, M., & Schleper, V. (2015). flow control in gas networks: exact controllability to a given demand (vol 34, pg 745, 2011). MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 38(5), Article 5. https://doi.org/10.1002/mma.3122
- Göddeke, D., Altenbernd, M., & Ribbrock, D. (2015). Fault-tolerant finite-element multigrid algorithms with hierarchically compressed asynchronous checkpointing. Parallel Computing, 49, 117–135. https://doi.org/10.1016/j.parco.2015.07.003
- Hahn, B. N. (2015). Dynamic linear inverse problems with moderate movements of the object: Ill-posedness and regularization. Inverse Problems & Imaging, 9(2), Article 2. https://doi.org/10.3934/ipi.2015.9.395
- Hintermüller, M., & Langer, A. (2015). Non-overlapping domain decomposition methods for dual total variation based image denoising. Journal of Scientific Computing, 62(2), Article 2. http://link.springer.com/article/10.1007/s10915-014-9863-8
- Hänel, A. (2015). Singular problems in quantum and elastic waveguides via Dirichlet-to-Neumann analysis. [Dissertation]. Universität Stuttgart.
- Höllig, K., & Hörner, J. (2015). Programming finite element methods with weighted B-splines. Computers & Mathematics with Applications, 70(7), Article 7. https://doi.org/10.1016/j.camwa.2015.02.019
- Kaulmann, S., Flemisch, B., Haasdonk, B., Lie, K. A., & Ohlberger, M. (2015). The localized reduced basis multiscale method for two-phase flows in porous media. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 102(5, SI), Article 5, SI. https://doi.org/10.1002/nme.4773
- Kissling, F., & Rohde, C. (2015). The Computation of Nonclassical Shock Waves in Porous Media with a Heterogeneous Multiscale Method: The Multidimensional Case. Multiscale Model. Simul., 13 Nr. 4, 1507–1541. https://doi.org/10.1137/120899236
- Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2015). Poisson problems for semilinear Brinkman systems on Lipschitz domains in R^3. ZAMP, 66, 833–846.
- Kohr, M., de Cristoforis, M. L., & Wendland, W. L. (2015). Poisson problems for semilinear Brinkman systems on Lipschitz domains in R-n. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 66(3), Article 3. https://doi.org/10.1007/s00033-014-0439-0
- Kohr, M., Pintea, C., & Wendland, W. L. (2015). Poisson-Transmission Problems for -Perturbations of the Stokes System on Lipschitz Domains in Compact Riemannian Manifolds. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 27(3–4), Article 3–4. https://doi.org/10.1007/s10884-014-9359-0
- Kovar\’ık, H., & Weidl, T. (2015). Improved Berezin-Li-Yau inequalities with magnetic field. Proc. Roy. Soc. Edinburgh Sect. A, 145(1), Article 1. https://doi.org/10.1017/S0308210513001595
- Kovarik, H., & Weidl, T. (2015). Improved Berezin-Li-Yau inequalities with magnetic field. In Proceedings of the Royal Society Of Edinburgh. Section A, Mathematics (No. 1; Bd. 145, Nummer 1, S. 145–160). Cambridge Univ. Press. https://doi.org/10.1017/S0308210513001595
- Kroeker, I., Nowak, W., & Rohde, C. (2015). A stochastically and spatially adaptive parallel scheme for uncertain and nonlinear two-phase flow problems. COMPUTATIONAL GEOSCIENCES, 19(2), Article 2. https://doi.org/10.1007/s10596-014-9464-5
- Kröker, I., Nowak, W., & Rohde, C. (2015). A stochastically and spatially adaptive parallel scheme for uncertain and nonlinear two-phase flow problems. Comput. Geosci., 19(2), Article 2. https://doi.org/10.1007/s10596-014-9464-5
- Kutter, M. (2015). A two scale model for liquid phase epitaxy with elasticity [University of Stuttgart]. http://elib.uni-stuttgart.de/opus/volltexte/2015/9833/
- Köroglu, H., Scherer, C. W., & Falcone, P. (2015). Robust Static Output Feedback Synthesis under an Integral Quadratic Constraint on the States. Eur. Control Conf., 3203–3208. https://doi.org/10.1109/ECC.2015.7331027
- Lienstromberg, C. (2015). A free boundary value problem modelling microelectromechanical systems with general permittivity. Nonlinear Anal. Real World Appl., 25, 190--218. https://doi.org/10.1016/j.nonrwa.2015.03.008
- List, F., & Radu, F. A. (2015). A study on iterative methods for solving Richards’ equation. http://www.nupus.uni-stuttgart.de/07_Preprints_Publications/Preprints/Preprints-PDFs/Preprint_201506.pdf
- Martini, I., & Haasdonk, B. (2015). Output Error Bounds for the Dirichlet-Neumann Reduced Basis Method. Numerical Mathematics and Advanced Applications - ENUMATH 2013, 103, 437--445. https://doi.org/10.1007/978-3-319-10705-9_43
- Martini, I., Rozza, G., & Haasdonk, B. (2015). Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system. Advances in Computational Mathematics, 41(5), Article 5. https://doi.org/10.1007/s10444-014-9396-6
- Micula, S., & Wendland, W. L. (2015). Trigonometric collocation for nonlinear Riemann-Hilbert problems in doubly connected domains. IMA J. Num. Analysis, 35, 834–858.
- Micula, S., & Wendland, W. L. (2015). Trigonometric collocation for nonlinear Riemann-Hilbert problems on doubly connected domains. IMA JOURNAL OF NUMERICAL ANALYSIS, 35(2), Article 2. https://doi.org/10.1093/imanum/dru009
- Missler, J., Schwarzmann, D., & Allerhand, L. I. (2015). On the Influence of Filter Choice in Output-Feedback MRAC during Adaptation Transients. IFAC-PapersOnLine, 48(11), Article 11. https://doi.org/10.1016/j.ifacol.2015.09.236
- Müthing, S., Ribbrock, D., & Göddeke, D. (2015). Integrating multi-threading and accelerators into DUNE-ISTL. In A. Abdulle, S. Deparis, D. Kressner, F. Nobile, & M. Picasso (Hrsg.), Numerical Mathematics and Advanced Applications -- ENUMATH 2013 (Bd. 103, S. 601--609). Springer. https://doi.org/10.1007/978-3-319-10705-9_59
- Neusser, J., Rohde, C., & Schleper, V. (2015). Relaxation of the Navier-Stokes-Korteweg Equations for Compressible Two-Phase Flow with Phase Transition. J. Numer. Methods Fluids, 79, 615–639. https://doi.org/10.1002/fld.4065
- Neusser, J., Rohde, C., & Schleper, V. (2015). Relaxed Navier-Stokes-Korteweg Equations for compressible two-phase flow with phase transition. J. Numer. Meth. Fluids, 79(12), Article 12. https://doi.org/10.1002/fld.4065
- Neusser, J., & Schleper, V. (2015). Numerical schemes for the coupling of compressible and incompressible fluids in several space dimensions.
- Oztepe, G. S., Choudhury, S. R., & Bhatt, A. (2015). Multiple Scales and Energy Analysis of Coupled Rayleigh-Van der Pol Oscillators with Time-Delayed Displacement and Velocity Feedback: Hopf Bifurcations and Amplitude Death. Far East Journal of Dynamical Systems. https://doi.org/10.17654/FJDSMar2015_031_059
- Redeker, M., & Haasdonk, B. (2015). A POD-EIM reduced two-scale model for crystal growth. Advances in Computational Mathematics, 41(5), Article 5. https://doi.org/10.1007/s10444-014-9367-y
- Redeker, M., & Haasdonk, B. (2015). A POD-EIM reduced two-scale model for precipitation in porous media [SimTech Preprint]. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=964
- Rohde, C., & Zeiler, C. (2015). A relaxation Riemann solver for compressible two-phase flow with phase transition and surface tension. Appl. Numer. Math., 95, 267--279. https://doi.org/10.1016/j.apnum.2014.05.001
- Ruzhansky, M., & Wirth, J. (2015). L-p Fourier multipliers on compact Lie groups. Math. Z., 280(3–4), Article 3–4. https://doi.org/10.1007/s00209-015-1440-9
- Rybak, I. V., Gray, W. G., & Miller, C. T. (2015). Modeling two-fluid-phase flow and species transport in porous media. J. Hydrology, 521, 565--581. https://doi.org/10.1016/j.jhydrol.2014.11.051
- Rybak, I., Magiera, J., Helmig, R., & Rohde, C. (2015). Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems. Comput. Geosci., 19, 299–309. https://doi.org/10.1007/s10596-015-9469-8
- Scherer, C. W. (2015). Gain-scheduling control with dynamic multipliers by convex optimization. SIAM J. Contr. Optim., 53(3), Article 3. https://doi.org/10.1137/140985871
- Schleper, V. (2015). A hybrid model for traffic flow and crowd dynamics with random individual properties. Math. Biosci. Eng., 12(2), Article 2. https://doi.org/10.3934/mbe.2015.12.393
- Schleper, V. (2015). Nonlinear Transport and Coupling of Conservation Laws.
- Schmidt, A., Dihlmann, M., & Haasdonk, B. (2015). Basis generation approaches for a reduced basis linear quadratic regulator. Proc. MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling, 713--718. https://doi.org/10.1016/j.ifacol.2015.05.016
- Schmidt, A., & Haasdonk, B. (2015). Reduced basis method for $H_2$ optimal feedback control problems. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1442
- Schmidt, A., & Haasdonk, B. (2015). Reduced Basis Approximation of Large Scale Algebraic Riccati Equations. University of Stuttgart.
- Steinwart, I. (2015). Supplement B to ``Fully Adaptive Density-Based Clustering’’. Fakultät für Mathematik und Physik, Universität Stuttgart. https://doi.org/10.1214/15-AOS1331SUPP
- Steinwart, I. (2015). Measuring the capacity of sets of functions in the analysis of ERM. In A. Gammerman & V. Vovk (Hrsg.), Festschrift in Honor of Alexey Chervonenkis (S. 223--239). Springer. https://doi.org/10.1007/978-3-642-41136-6
- Steinwart, I. (2015). Fully Adaptive Density-Based Clustering. Ann. Statist., 43, 2132--2167. https://doi.org/10.1214/15-AOS1331
- Steinwart, I. (2015). Supplement A to ``Fully Adaptive Density-Based Clustering’’ (Nos. 2013–016; Nummern 2013–016). Fakultät für Mathematik und Physik, Universität Stuttgart. https://doi.org/10.1214/15-AOS1331SUPP
- Thomann, P., Steinwart, I., & Schmid, N. (2015). Towards an Axiomatic Approach to Hierarchical Clustering of Measures. J. Mach. Learn. Res., 16, 1949--2002.
- Veenman, J. (2015). A general framework for robust analysis and control: an integral quadratic constraint based approach [Dissertation, Logos Verlag, Berlin]. http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3963&lng=eng&id=
- Wirth, J. (2015). Diffusion phenomena for partially dissipative hyperbolic systems. In Nonlinear dynamics in partial differential equations (Bd. 64, S. 303--310). Math. Soc. Japan, Tokyo.
- Wirtz, D., Karajan, N., & Haasdonk, B. (2015). Surrogate Modelling of multiscale models using kernel methods. International Journal of Numerical Methods in Engineering, 101(1), Article 1. https://doi.org/10.1002/nme.4767
- Wirtz, D., Karajan, N., & Haasdonk, B. (2015). Surrogate modeling of multiscale models using kernel methods. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 101(1), Article 1. https://doi.org/10.1002/nme.4767
- Zeiler, C. (2015). Liquid Vapor Phase Transitions: Modeling, Riemann Solvers and Computation [Verlag Dr. Hut]. http://elib.uni-stuttgart.de/handle/11682/8919%7D
2014
- Adibi, H., & Minbashian, H. (2014). Integral Equations (in Persian). Amirkabir University of Technology Press.
- Aki, G. L., Dreyer, W., Giesselmann, J., & Kraus, C. (2014). A quasi-incompressible diffuse interface model with phase transition. Math. Models Methods Appl. Sci., 24(5), Article 5. https://doi.org/10.1142/S0218202513500693
- Apprich, C., Höllig, K., Hörner, J., Keller, A., & Yazdani, E. N. (2014). Finite Element Approximation with Hierarchical B-Splines. In J.-D. Boissonnat, A. Cohen, O. Gibaru, C. Gout, T. Lyche, M.-L. Mazure, & L. L. Schumaker (Hrsg.), Curves and Surfaces (Bd. 9213, S. 1–15). Springer. http://dblp.uni-trier.de/db/conf/cas/cas2014.html#ApprichHHKY14
- Armiti-Juber, A., & Rohde, C. (2014). Almost Parallel Flows in Porous Media. In J. Fuhrmann, M. Ohlberger, & C. Rohde (Hrsg.), Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems (Bd. 78, S. 873–881). Springer International Publishing. https://doi.org/10.1007/978-3-319-05591-6_88
- Barth, A., & Benth, F. E. (2014). The forward dynamics in energy markets -- infinite-dimensional modelling and simulation. Stochastics, 86(6), Article 6. https://doi.org/10.1080/17442508.2014.895359
- Barth, A., & Moreno-Bromberg, S. (2014). Optimal risk and liquidity management with costly refinancing opportunities. Insurance Math. Econom., 57, 31--45. https://doi.org/10.1016/j.insmatheco.2014.05.001
- Bastian, P., Engwer, C., Göddeke, D., Iliev, O., Ippisch, O., Ohlberger, M., Turek, S., Fahlke, J., Kaulmann, S., Müthing, S., & Ribbrock, D. (2014). EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications. In L. Lopes, J. Zilinskas, A. Costan, RobertoG. Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro, L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia, S. Hunold, StephenL. Scott, S. Lankes, C. Lengauer, J. Carretero, J. Breitbart, & M. Alexander (Hrsg.), Euro-Par 2014: Parallel Processing Workshops (Bd. 8806, S. 530--541). Springer. https://doi.org/10.1007/978-3-319-14313-2_45
- Bonnafé, C., & Geck, M. (2014). Conjugacy classes of involutions and Kazhdan–Lusztig cells. Representation Theory of the American Mathematical Society, 18(6), Article 6. https://doi.org/10.1090/s1088-4165-2014-00456-4
- Burkovska, O., Haasdonk, B., Salomon, J., & Wohlmuth, B. (2014). Reduced basis methods for pricing options with the Black-Scholes and Heston model. SIAM Journal on Financial Mathematics, 6, 685--712. https://doi.org/10.1137/140981216
- Bürger, R., Kröker, I., & Rohde, C. (2014). A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier-thickener unit. ZAMM Z. Angew. Math. Mech., 94(10), Article 10. https://doi.org/10.1002/zamm.201200174
- Chalons, C., Engel, P., & Rohde, C. (2014). A Conservative and Convergent Scheme for Undercompressive Shock Waves. SIAM J. Numer. Anal., 52(1), Article 1. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=732
- Corli, A., Rohde, C., & Schleper, V. (2014). Parabolic approximations of diffusive-dispersive equations. J. Math. Anal. Appl., 414, 773–798. http://dx.doi.org/10.1016/j.jmaa.2014.01.049
- Cruz-Uribe, D., Fiorenza, A., Ruzhansky, M., & Wirth, J. (2014). Variable Lebesgue spaces and hyperbolic systems. In Advanced Courses in Mathematics. CRM Barcelona (S. x+169). Birkhäuser/Springer, Basel.
- Dihlmann, M., & Haasdonk, B. (2014). A reduced basis Kalman filter for parametrized partial differential equations. University of Stuttgart.
- Dreyer, W., Giesselmann, J., & Kraus, C. (2014). A compressible mixture model with phase transition. Physica D, 273–274, 1–13. http://dx.doi.org/10.1016/j.physd.2014.01.006
- Dreyer, W., Giesselmann, J., & Kraus, C. (2014). Modeling of compressible electrolytes with phase transition. http://arxiv.org/abs/1405.6625
- Ehlers, W., Helmig, R., & Rohde, C. (2014). Editorial: Deformation and transport phenomena in porous media. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 94(7–8), Article 7–8. https://doi.org/10.1002/zamm.201400559
- Engel, P., Viorel, A., & Rohde, C. (2014). A Low-Order Approximation for Viscous-Capillary Phase Transition Dynamics. Port. Math., 70(4), Article 4. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=723
- Eymard, R., & Schleper, V. (2014). Study of a numerical scheme for miscible two-phase flow in porous media. Numer. Meth. Part. D. E., 30, 723–748. https://doi.org/10.1002/num.21823
- Fechter, S., Zeiler, C., Munz, C.-D., & Rohde, C. (2014). Simulation of compressible multi-phase flows at extreme ambient conditions using a Discontinuous-Galerkin method. ILASS Europe, 26th European Conference on Liquid Atomization and Spray Systems.
- Finite Volumes for Complex Applications VII Elliptic, Parabolic and Hyperbolic Problems, FVCA 7, Berlin, June 2014. (2014). In J. Fuhrmann, M. Ohlberger, & C. Rohde (Hrsg.), Springer Proceedings in Mathematics & Statistics: Bd. Vol. 77/78.
- Garikapati, H. (2014). A PGD Based Preconditioner for Scalar Elliptic Problems.
- Gaspoz, F. D., & Morin, P. (2014). Approximation classes for adaptive higher order finite element approximation. Math. Comp., 83(289), Article 289. https://doi.org/10.1090/S0025-5718-2013-02777-9
- Geck, M. (2014). On the Characterization of Galois Extensions. The American Mathematical Monthly, 121(7), Article 7. https://doi.org/10.4169/amer.math.monthly.121.07.637
- Geck, M. (2014). Algebra: Gruppen, Ringe, Körper. Mit einer Einführung in die Darstellungstheorie endlicher Gruppen. edition delkhofen.
- Geck, M. (2014). Kazhdan-Lusztig cells and the Frobenius-Schur indicator. Journal of Algebra, 398, 329--342. https://doi.org/10.1016/j.jalgebra.2013.01.019
- Giesselmann, J. (2014). A Relative Entropy Approach to Convergence of a Low Order Approximation to a Nonlinear Elasticity Model with Viscosity and Capillarity. SIAM J. Math. Anal., 46(5), Article 5. https://doi.org/10.1137/140951710
- Giesselmann, J., Makridakis, C., & Pryer, T. (2014). Energy consistent DG methods for the Navier-Stokes-Korteweg system. Math. Comp., 83, 2071-- 2099. http://dx.doi.org/10.1090/S0025-5718-2014-02792-0
- Giesselmann, J., & M�ller, T. (2014). Geometric error of finite volume schemes for conservation laws on evolving surfaces. Numer. Math., 128(3), Article 3. https://doi.org/10.1007/s00211-014-0621-5
- Giesselmann, J., & M�ller, T. (2014). Estimating the Geometric Error of Finite Volume Schemes for Conservation Laws on Surfaces for generic numerical flux functions. In M. O. J. Fuhrmann & C. Rohde (Hrsg.), Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects (Bd. 77).
- Giesselmann, J., & Pryer, T. (2014). On aposteriori error analysis of DG schemes approximating hyperbolic conservation laws. In M. O. J. Fuhrmann & C. Rohde (Hrsg.), Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects (Bd. 77).
- Giesselmann, J., & Tzavaras, A. E. (2014). Singular Limiting Induced from Continuum Solutions and the Problem of Dynamic Cavitation. Arch. Ration. Mech. Anal., 212(1), Article 1. https://doi.org/10.1007/s00205-013-0677-x
- Giesselmann, J., & Tzavaras, A. E. (2014). On cavitation in elastodynamics. In F. Ancona, A. Bressan, P. Marcati, & A. Marson (Hrsg.), Hyperbolic Problems: Theory, Numerics, Applications (S. 599–606). AIMS. https://aimsciences.org/books/am/AMVol8.html
- Göddeke, D., Komatitsch, D., & Möller, M. (2014). Finite and Spectral Element Methods on Unstructured Grids for Flow and Wave Propagation Methods. In V. Kindratenko (Hrsg.), Numerical Computations with GPUs (S. 183--206). Springer. https://doi.org/10.1007/978-3-319-06548-9_9
- Haasdonk, B. (2014). Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction for Stationary and Instationary Problems [SimTech Preprint]. IANS, University of Stuttgart, Germany. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938
- Haasdonk, B., & Ohlberger, M. (2014). Wenn die Probleme zahlreicher werden: Reduzierte Basis Methoden f�r effiziente und gesicherte numerische Simulation. GAMM Rundbrief, 2014(1), Article 1.
- Haasdonk, B., & Ohlberger, M. (2014). Wenn die Probleme zahlreicher werden: Reduzierte Basis Methoden für effiziente und gesicherte numerische Simulation. GAMM Rundbrief, 2014(1), Article 1.
- Hahn, B. N. (2014). Reconstruction of dynamic objects with affine deformations in computerized tomography. Journal of Inverse and Ill-posed Problems, 22(3), Article 3. https://doi.org/10.1515/jip-2012-0094
- Hahn, B. N. (2014). Efficient algorithms for linear dynamic inverse problems with known motion. Inverse Problems, 30(3), Article 3. https://doi.org/10.1088/0266-5611/30/3/035008
- Hang, H., & Steinwart, I. (2014). Fast Learning from $\alpha$-mixing Observations. J. Multivariate Anal., 127, 184--199. https://doi.org/10.1016/j.jmva.2014.02.012
- Harbrecht, H., Wendland, W. L., & Zorii, N. (2014). Riesz minimal energy problems on C^k-1,1 manifolds. Math. Nachr., 287, 48–69.
- Hintermüller, M., & Langer, A. (2014). Adaptive Regularization for Parseval Frames in Image Processing. SFB-Report No. 2014-014. http://people.ricam.oeaw.ac.at/a.langer/publications/SFB-Report-2014-014.pdf
- Hintermüller, M., & Langer, A. (2014). Surrogate Functional Based Subspace Correction Methods for Image Processing. In Domain Decomposition Methods in Science and Engineering XXI (S. 829--837). Springer. http://link.springer.com/chapter/10.1007/978-3-319-05789-7_80
- Kabil, B., & Rohde, C. (2014). The influence of surface tension and configurational forces on the stability of liquid-vapor interfaces. Nonlinear Analysis: Theory, Methods & Applications, 107(0), Article 0. http://dx.doi.org/10.1016/j.na.2014.04.003
- Kaulmann, S., Flemisch, B., Haasdonk, B., Lie, K.-A., & Ohlberger, M. (2014). The localized reduced basis multiscale method for two-phase flows in porous media. International Journal for Numerical Methods in Engineering. https://doi.org/10.1002/nme.4773
- Kaulmann, S., Flemisch, B., Haasdonk, B., Lie, K. A., & Ohlberger, M. (2014). The Localized Reduced Basis Multiscale method for two-phase flow in porous media. arXiv preprint arXiv:1405.2810.
- Kazaz, L. (2014). Black Box Model Order Reduction of Nonlinear Systems with Kernel and Discrete Empirical Interpolation.
- Kohls, K., Rösch, A., & Siebert, K. G. (2014). A Posteriori Error Analysis of Optimal Control Problems with Control Constraints. SIAM J. Control Optim., 52(3), 1832�1861. (30 pages). http://dx.doi.org/10.1137/130909251
- Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2014). Nonlinear Darcy-Forchheimer-Brinkman system with linear boundary conditions in Lipschitz domains. In A. G. T. Aliev Azerogly & S. V. Rogosin (Hrsg.), Complex Analysis and Potential Theory with Applications (S. 111–124). Cambridge Sci. Publ.
- Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2014). Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman systems in Lipschitz domains. J. Math. Fluid Mechanics, 16, 595–830.
- Kohr, M., Pintea, C., & Wendland, W. L. (2014). Neumann-transmission problems for pseudodifferential Brinkman operators on Lipschitz domains in compact Riemannian manifolds. Communications in Pure and Applied Analysis, 13, 1–28. https://doi.org/03934/cpaa.2013.13.
- Köppel, M., Kröker, I., & Rohde, C. (2014). Stochastic Modeling for Heterogeneous Two-Phase Flow. In J. Fuhrmann, M. Ohlberger, & C. Rohde (Hrsg.), Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects (Bd. 77, S. 353–361). Springer International Publishing. https://doi.org/10.1007/978-3-319-05684-5_34
- Maier, I., & Haasdonk, B. (2014). A Dirichlet-Neumann reduced basis method for homogeneous domain decomposition problems. Applied Numerical Mathematics, 78, 31--48. https://doi.org/10.1016/j.apnum.2013.12.001
- Müthing, S., Bastian, P., Göddeke, D., & Ribbrock, D. (2014). Node-level performance engineering for an advanced density driven porous media flow solver. 3rd Workshop on Computational Engineering 2014, Stuttgart, Germany, 109--113.
- Redeker, M. (2014). Adaptive two-scale models for processes with evolution of microstructures [University of Stuttgart]. http://elib.uni-stuttgart.de/opus/volltexte/2014/9443
- Rossi, E., & Schleper, V. (2014). Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions. http://www.mathematik.uni-stuttgart.de/preprints/downloads/2015/2015-003.pdf
- Ruzhansky, M., Turunen, V., & Wirth, J. (2014). Hörmander class of pseudo-differential operators on compact Lie groups and global hypoellipticity. J. Fourier Anal. Appl., 20(3), Article 3. https://doi.org/10.1007/s00041-014-9322-9
- Ruzhansky, M., & Wirth, J. (2014). Global functional calculus for operators on compact Lie groups. J. Funct. Anal., 267(1), Article 1. https://doi.org/10.1016/j.jfa.2014.04.009
- Ruzhansky, M., & Wirth, J. (2014). Asymptotic behaviour of solutions to hyperbolic equations and systems. In Variable Lebesgue spaces and hyperbolic systems (S. 91--169). Birkhäuser/Springer, Basel.
- Rybak, I. (2014). Coupling free flow and porous medium flow systems using sharp interface and transition region concepts. In J. Fuhrmann, M. Ohlberger, & C. Rohde (Hrsg.), Finite Volumes for Complex Applications VII - Elliptic, Parabolic and Hyperbolic Problems, FVCA 7 (Bd. 78, S. 703--711). Springer. https://doi.org/10.1007/978-3-319-05591-6_70
- Rybak, I., & Magiera, J. (2014). A multiple-time-step technique for coupled free flow and porous medium systems. J. Comput. Phys., 272, 327--342. https://doi.org/10.1016/j.jcp.2014.04.036
- Scherer, C. W. (2014). $H_ınfty$- and $H_2$-synthesis for nested interconnections: A direct state-space approach by linear matrix inequalities. 21st Int. Symp. Math. Theory Netw. and Systems. http://fwn06.housing.rug.nl/mtns2014-papers/fullPapers/0141.pdf
- Staehle, M. (2014). Anisotrope Diffusion zur Bildfilterung.
- Steinwart, I., Pasin, C., Williamson, R., & Zhang, S. (2014). Elicitation and Identification of Properties. In M. F. Balcan & C. Szepesvari (Hrsg.), JMLR Workshop and Conference Proceedings Volume 35: Proceedings of the 27th Conference on Learning Theory 2014 (S. 482--526).
- Veenman, J., & Scherer, C. W. (2014). IQC-synthesis with general dynamic multipliers. Int. J. Robust Nonlin., 24(17), Article 17. https://doi.org/10.1002/rnc.3042
- Veenman, J., & Scherer, C. W. (2014). A synthesis framework for robust gain-scheduling controllers. Automatica, 50(11), Article 11. https://doi.org/10.1016/j.automatica.2014.10.002
- Wendland, W. L. (2014). Martin Costabel’s version of the trace theorem revisited. Math. Methods Appl. Sci., 37 (13), 1924–1955.
- Wirth, J. (2014). Diffusion phenomena for partially dissipative hyperbolic systems. J. Math. Anal. Appl., 414(2), Article 2. https://doi.org/10.1016/j.jmaa.2014.01.034
- Wirtz, D., Sorensen, D. C., & Haasdonk, B. (2014). A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical Systems. SIAM Journal on Scientific Computing, 36(2), Article 2. https://doi.org/10.1137/120899042
- Wittwar, D. (2014). Empirische Interpolation and Anwendung zur Numerischen Integration.
2013
- Abdulle, A., Barth, A., & Schwab, C. (2013). Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs. Multiscale Model. Simul., 11(4), Article 4. https://doi.org/10.1137/120894725
- Amsallem, D., Haasdonk, B., & Rozza, G. (2013). A Conference within a Conference for MOR Researchers. SIAM News, 46(6), Article 6. http://www.siam.org/news/news.php?id=2089
- Barth, A., & Lang, A. (2013). L^p and almost sure convergence of a Milstein scheme for stochastic partial differential equations. Stochastic Process. Appl., 123(5), Article 5. https://doi.org/10.1016/j.spa.2013.01.003
- Barth, A., Lang, A., & Schwab, C. (2013). Multilevel Monte Carlo method for parabolic stochastic partial differential equations. BIT, 53(1), Article 1. https://doi.org/10.1007/s10543-012-0401-5
- Bissinger, T. (2013). Verfahren zur Stabilen Kerninterpolation.
- Chaudenson, J., Fetzer, M., Scherer, C. W., Beauvois, D., Sandou, G., Bennani, S., & Ganet-Shoeller, M. (2013). Stability analysis of pulse-modulated systems with an application to space launchers. IFAC Proc. Vol., 46(19), Article 19. https://doi.org/10.3182/20130902-5-DE-2040.00082
- De Marchi, S., & Santin, G. (2013). A new stable basis for radial basis function interpolation. J. Comput. Appl. Math., 253, 1--13. https://doi.org/10.1016/j.cam.2013.03.048
- Degeratu, A., & Stern, M. (2013). Witten spinors on nonspin manifolds. Comm. Math. Phys., 324(2), Article 2. https://doi.org/10.1007/s00220-013-1804-0
- Dihlmann, M., & Haasdonk, B. (2013). Certified Nonlinear Parameter Optimization with Reduced Basis Surrogate Models. PAMM, Proc. Appl. Math. Mech., Special Issue: 84th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Novi Sad 2013; Editors: L. Cvetkovic, T. Atanackovic and V. Kostic, 13(1), Article 1. https://doi.org/doi: 10.1002/pamm.201310002
- Dihlmann, M. A., & Haasdonk, B. (2013). Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems [SimTech Preprint]. University of Stuttgart (The final publication is available at Springer via http://dx.doi.org/10.1007/s10589-014-9697-1).
- Eberts, M., & Steinwart, I. (2013). Optimal regression rates for SVMs using Gaussian kernels. Electron. J. Stat., 7, 1--42. https://doi.org/10.1214/12-EJS760
- Eck, Ch., Kutter, M., Sändig, A.-M., & Rohde, Ch. (2013). A two scale model for liquid phase epitaxy with elasticity: An iterative procedure. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 93(10–11), Article 10–11. https://doi.org/10.1002/zamm.201200238
- Eisenschmidt, K., Rauschenberger, P., Rohde, C., & Weigand, B. (2013). Modelling of freezing processes in super-cooled droplets on sub-grid scale. ILASS�Europe, 25th European Conference on Liquid Atomization and Spray Systems.
- Fechter, S., Jägle, F., & Schleper, V. (2013). Exact and approximate Riemann solvers at phase boundaries. Computers & Fluids, 75, 112--126. https://doi.org/10.1016/j.compfluid.2013.01.024
- Fehr, J., Fischer, M., Haasdonk, B., & Eberhard, P. (2013). Greedy-based Approximation of Frequency-weighted Gramian Matrices for Model Reduction in Multibody Dynamics. ZAMM, 93(8), Article 8. https://doi.org/10.1002/zamm.201200014
- Fericean, D., Grosan, T., Kohr, M., & Wendland, W. L. (2013). Interface boundary value problems of Robin-transmission type for the Stokes and Brinkman systems on n-dimensional Lipschitz domains: Applications. Math. Methods Appl. Sci., 36, 1631–1648. https://doi.org/10.1002/mma.2716
- Fericean, D., & Wendland, W. L. (2013). Layer potential analysis for a Dirichlet-transmission problem in Lipschitz domains in R^n. ZAMM, 93, 762–776. https://doi.org/10.1002/zamm.20100185
- Geck, M. (2013). An Introduction to Algebraic Geometry and Algebraic Groups. In Oxford Graduate Texts in Mathematics (Bd. 10, S. ix+307). Oxford University Press.
- Geck, M., & Iancu, L. (2013). Ordering Lusztig’s families in type Bn. J. Algebr. Comb., 38, 457–489. https://doi.org/DOI 10.1007/s10801-012-0411-z
- Geck, M., & Malle, G. (2013). Frobenius-Schur indicators of unipotent characters and the twisted involution module. Representation Theory of the American Mathematical Society, 17(5), Article 5. https://doi.org/10.1090/s1088-4165-2013-00430-2
- Geveler, M., Ribbrock, D., Göddeke, D., Zajac, P., & Turek, S. (2013). Towards a complete FEM-based simulation toolkit on GPUs: Unstructured Grid Finite Element Geometric Multigrid solvers with strong smoothers based on Sparse Approximate Inverses. Computers & Fluids, 80, 327--332. https://doi.org/10.1016/j.compfluid.2012.01.025
- Giesselmann, J. (2013). Cavitation and Singular Solutions in Nonlinear Elastodynamics. PAMM 13, 363–364. https://doi.org/10.1002/pamm.201310177
- Giesselmann, J., Miroshnikov, A., & Tzavaras, A. E. (2013). The problem of dynamic cavitation in nonlinear elasticity. S�minaire Laurent Schwartz � EDP et applications. http://slsedp.cedram.org/cedram-bin/article/SLSEDP_2012-2013____A14_0.pdf
- Göddeke, D., Komatitsch, D., Geveler, M., Ribbrock, D., Rajovic, N., Puzovic, N., & Ramirez, A. (2013). Energy efficiency vs. performance of the numerical solution of PDEs: an application study on a low-power ARM-based cluster. Journal of Computational Physics, 237, 132--150. https://doi.org/10.1016/j.jcp.2012.11.031
- Göttlich, S., Hoher, S., Schindler, P., Schleper, V., & Verl, A. (2013). Modeling, simulation and validation of material flow on conveyor belts. Appl. Math. Modell., 38(13), Article 13. http://dx.doi.org/10.1016/j.apm.2013.11.039
- Haasdonk, B. (2013). Convergence Rates of the POD--Greedy Method. ESAIM: Mathematical Modelling and Numerical Analysis, 47(3), Article 3. https://doi.org/10.1051/m2an/2012045
- Haasdonk, B., Urban, K., & Wieland, B. (2013). Reduced basis methods for parametrized partial differential equations with stochastic influences using the Karhunen Loeve expansion. SIAM/ASA J. Unc. Quant., 1, 79–105.
- Hahn, B. N., Louis, A. K., Maisl, M., & Schorr, C. (2013). Combined reconstruction and edge detection in dimensioning. Meas. Sci. Technol, 24(12), Article 12. https://doi.org/10.1088/0957-0233/24/12/125601
- Heine, C.-J., M�ller, C. A., Peter, M. A., & Siebert, K. G. (2013). Multiscale adaptive simulations of concrete carbonation taking into account the evolution of the microstructure. In C. Hellmich, B. Pichler, & D. Adam (Hrsg.), Poromechanics: Bd. V (S. 1964�1972). ASCE. http://dx.doi.org/10.1061/9780784412992.232
- Hintermüller, M., & Langer, A. (2013). Subspace Correction Methods for a Class of Nonsmooth and Nonadditive Convex Variational Problems with Mixed L\^1/L\^2 Data-Fidelity in Image Processing. SIAM Journal on Imaging Sciences, 6(4), Article 4. http://epubs.siam.org/doi/abs/10.1137/120894130
- Höllig, K., & Hörner, J. (2013). Approximation and Modeling with B-Splines. (S. I–XIII, 1–211). SIAM.
- Kaulmann, S., & Haasdonk, B. (2013). Online Greedy Reduced Basis Construction using Dictionaries [SimTech Preprint]. University of Stuttgart.
- Kerr, M. M., & Kollross, A. (2013). Nonnegatively curved homogeneous metrics obtained by scaling fibers of submersions. Geometriae Dedicata, 166(1), Article 1. https://doi.org/10.1007/s10711-012-9795-0
- Kerr, M. M., & Kollross, A. (2013). Nonnegatively curved homogeneous metrics in low dimensions. Annals of Global Analysis and Geometry, 43(3), Article 3. https://doi.org/10.1007/s10455-012-9345-x
- Kissling, F., & Karlsen, K. H. (2013). On the singular limit of a two-phase flow equation with heterogeneities and dynamic capillary pressure. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, n/a--n/a. https://doi.org/10.1002/zamm.201200141
- Kissling, F. (2013). Analysis and Numerics for Nonclassical Wave Fronts in Porous Media [Universität Stuttgart]. http://www.dr.hut-verlag.de/978-3-8439-0996-9.html
- Kohr, M., Pintea, C., & Wendland, W. L. (2013). Dirichlet-transmission problems for pseudodifferential Brinkman operators on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian manifolds. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 93, 446–458. https://doi.org/10.1002/zamm.201100194
- Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2013). Nonlinear Neumann-Transmission Problems for Stokes and Brinkman Equations on Euclidean Lipschitz Domains. Potential Analysis, 38, 1123–1171. https://doi.org/10.1007/s.11118-012-9310-0
- Kohr, M., Pintea, C., & Wendland, W. L. (2013). Layer Potential Analysis for Pseudodifferential Matrix Operators in Lipschitz Domains on Compact Riemannian Manifolds: Applications to Pseudodifferential Brinkman Operators. International Mathematics Research Notices, 2013 (19), 4499–4588. https://doi.org/10.1093/imnr/run999
- Kollross, A., & Lytchak, A. (2013). Polar actions on symmetric spaces of higher rank. Bulletin of the London Mathematical Society, 45(2), Article 2. https://doi.org/10.1112/blms/bds091
- Kreplin, D. (2013). Adaptive Reduzierte Basis Methoden für Evolutionsprobleme.
- Kröker, I. (2013). Stochastic models for nonlinear convection-dominated flows. Universität Stuttgart.
- Köppel, M. (2013). Flow Modelling of Coupled Fracture-Matrix Porous Media Systems with a Two Mesh Concept [Diplomarbeit]. Institut f�r Wasserbau, Universit�t Stuttgart, Zusammenarbeit mit Pomdapi INRIA Rocquencourt . Paris, France.
- Langer, A., Osher, S., & Schönlieb, C.-B. (2013). Bregmanized domain decomposition for image restoration. Journal of Scientific Computing, 54(2–3), Article 2–3. http://link.springer.com/article/10.1007/s10915-012-9603-x
- Moutari, S., Herty, M., Klein, A., Oeser, M., Schleper, V., & Steinaur, G. (2013). Modeling road traffic accidents using macroscopic second-order models of traffic flow. IMA Journal of Applied Mathematics, 78(5), Article 5. https://doi.org/doi: 10.1093/imamat/hxs012
- Nitsch, F. (2013). Stability Analysis of Linear Time-periodic Systems.
- Ortmann, V. (2013). Empirische Matrixinterpolation.
- Ostrowski, L. (2013). LQR control for Parametric Systems with Reduced Basis Controllers.
- Redeker, M., & Eck, C. (2013). A fast and accurate adaptive solution strategy for two-scale models with continuous inter-scale dependencies. Journal of Computational Physics, 240, 268–283. https://doi.org/10.1016/j.jcp.2012.12.025
- Rohde, C., Wang, W., & Xie, F. (2013). Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves. Communications on Pure and Applied Analysis, 12(5), Article 5. https://doi.org/10.3934/cpaa.2013.12.2145
- Rohde, C., Wang, W., & Xie, F. (2013). Decay Rates to Viscous Contact Waves for a 1D Compressible Radiation Hydrodynamics Model. Mathematical Models and Methods in Applied Sciences, 23(03), Article 03. https://doi.org/10.1142/S0218202512500522
- Ruzhanski\uı, M. V., & Virt, I. (2013). On multipliers on compact Lie groups. Funktsional. Anal. i Prilozhen., 47(1), Article 1. https://doi.org/10.1007/s10688-013-0010-3
- Sachs, A. (2013). Proper-Generalized-Decomposition-Methode für elliptische partielle Differentialgleichungen.
- Scherer, C. W. (2013). Structured $H_ınfty$-Optimal Control for Nested Interconnections: A State-Space Solution. Syst. Control Lett., 62(12), Article 12. https://doi.org/10.1016/j.sysconle.2013.09.001
- Scherer, C. W. (2013). Gain-scheduled synthesis with dynamic generalized strictly positive real multipliers: A complete solution. 52nd IEEE Conf. Decision and Control, 4116–4121. https://doi.org/10.1109/CDC.2013.6760520
- Scherer, C. W., & Köse, I. E. (2013). From transfer matrices to realizations: Convergence properties and parametrization of robustness analysis conditions. Syst. Control Lett., 62(8), Article 8. https://doi.org/10.1016/j.sysconle.2013.04.001
- Scherer, C. W. (2013). Gain-scheduled synthesis with dynamic stable strictly positive real multipliers: A complete solution. Eur. Control Conf., 3901–3906. https://doi.org/10.23919/ECC.2013.6669184
- Schmidt, A. (2013). Galerkin-Radiosity.
- Seus, D. (2013). Spektralasymptotiken auf dem Loopgraphen.
- Simon, A. (2013). Vergleich zwischen dem Galerkinverfahren und dem Verfahren des minimalen Residuums im Zusammenhang mit der Reduzierte-Basis-Methode.
- Simon, D. (2013). Algorithmen der gitterfreien Kollokation durch radiale Basisfunktionen.
- Stein, A. (2013). Limit Pricing als extensives Spiel mit sequentiellen Gleichgewichten [Bachelor Thesis].
- Steinwart, I. (2013). Some Remarks on the Statistical Analysis of SVMs and Related Methods. In B. Schölkopf, Z. Luo, & V. Vovk (Hrsg.), Empirical Inference -- Festschrift in Honor of Vladimir N. Vapnik (S. 25–36). Springer. https://doi.org/10.1007/978-3-642-41136-6
- Steinwart, I. (2013). Supplement B to ``Fully Adaptive Density-Based Clustering’’. Fakultät für Mathematik und Physik, Universität Stuttgart. https://doi.org/10.1214/15-AOS1331SUPP
- Steinwart, I. (2013). Supplement A to ``Fully Adaptive Density-Based Clustering’’ (Nos. 2013–016; Nummern 2013–016). Fakultät für Mathematik und Physik, Universität Stuttgart. https://doi.org/10.1214/15-AOS1331SUPP
- Strecker, T. (2013). Simulation and Model Reduction of a Skeletal Muscle Fibre System.
- Turek, S., & Göddeke, D. (2013). Hardware-oriented Numerics for PDE. In B. Engquist, T. Chan, W. J. Cook, E. Hairer, J. Hastad, A. Iserles, H. P. Langtangen, C. Le Bris, P. L. Lions, C. Lubich, A. J. Majda, J. R. McLaughlin, R. M. Nieminen, J. T. Oden, P. Souganidis, & A. Tveito (Hrsg.), Encyclopedia of Applied and Computational Mathematics. Springer.
- Veenman, J., & Scherer, C. W. (2013). Stability analysis with integral Quadratic constraints: A dissipativity based proof. 52nd IEEE Conf. Decision and Control, 3770–3775. https://doi.org/10.1109/CDC.2013.6760464
- Wirth, J. (2013). Thermo-elasticity for anisotropic media in higher dimensions. In Progress in partial differential equations (Bd. 44, S. 367--407). Springer, Cham. https://doi.org/10.1007/978-3-319-00125-8_17
- Wirtz, D., & Haasdonk, B. (2013). An Improved Vectorial Kernel Orthogonal Greedy Algorithm. Dolomites Research Notes on Approximation, 6, 83–100. http://drna.di.univr.it/papers/2013/WirtzHaasdonk.2013.VKO.pdf
- Wirtz, D., & Haasdonk, B. (2013). A Vectorial Kernel Orthogonal Greedy Algorithm. Dolomites Res. Notes Approx., 6, 83–100. http://drna.padovauniversitypress.it/system/files/papers/WirtzHaasdonk-2013-VKO.pdf
- Wolf, J.-P., & Ganser, M. (2013). Modelling and Simulation of Lithium-Ion Batteries.
- Yannou, B., Cluzel, F., & Dihlmann, M. (2013). Evolutionary and interactive sketching tool for innovative car shape design. Machanics & Industry, 14, 1–22.
2012
- Feistauer, M., & Sändig, A.-M. (2012). Graded mesh refinement and error estimates of higher order for DGFE solutions of elliptic boundary value problems in polygons. Numerical Methods for Partial Differential Equations, 28(4), Article 4. https://doi.org/10.1002/num.20668