Publikationen des Fachbereichs Mathematik

Fachbereich Mathematik

Publikationen der Mitglieder des Fachbereichs Mathematik ab 2017

 

Einen ersten Eindruck über die vielfältigen Publikationen der Forschenden des Fachbereichs, nicht nur in begutachteten Fachzeitschriften, gibt die folgende Übersicht exemplarisch für den Zeitraum ab 2017. Einen detaillerteren, evtl. vollständigeren und themenspezifischeren Eindruck vermitteln die Seiten der einzelnen Institute, Arbeitsgruppen und koordinierten Forschungsprogramme

  1. 2025

    1. Barth, A., & Stein, A. (2025). A stochastic transport problem with Lévy noise: Fully discrete numerical approximation. Mathematics and Computers in Simulation, 227, 347–370. https://doi.org/10.1016/j.matcom.2024.07.036
    2. Riethmüller, C., Storvik, E., Both, J. W., & Radu, F. A. (2025). Well-posedness analysis of the Cahn–Hilliard–Biot model. Nonlinear Analysis: Real World Applications, 84, 104271. https://doi.org/10.1016/j.nonrwa.2024.104271
  2. 2024

    1. "Knobloch, P., "Kuzmin, D., & "Jha, A. (2024). Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations (P. "Knobloch, D. "Kuzmin, & A. "Jha, Hrsg.).
    2. Albişoru, A. F., Kohr, M., Papuc, I., & Wendland, W. L. (2024). On some Robin–transmission problems for the Brinkman system and a Navier–Stokes type system. Math. Meth. Appl. Sci., 1–28. https://doi.org/10.1002/mma.10170
    3. Alkämper, M., Magiera, J., & Rohde, C. (2024). An Interface-Preserving Moving Mesh in Multiple Space  Dimensions. ACM Trans. Math. Softw., 50(1), Article 1. https://doi.org/10.1145/3630000
    4. Beschle, C., & Barth, A. (2024). Complexity analysis of quasi continuous level Monte Carlo. ESAIM: Mathematical Modelling and Numerical Analysis. https://doi.org/10.1051/m2an/2024039
    5. Beschle, C. A., & Barth, A. (2024). Quasi continuous level Monte Carlo for random elliptic PDEs. In Hinrichs, A., Kritzer, P., Pillichshammer, F. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2022 (Bd. 460, S. 3–31). Springer Proceedings in Mathematics & Statistics. https://doi.org/10.1007/978-3-031-59762-6_1
    6. Bondanza, M., Nottoli, T., Nottoli, M., Cupellini, L., Lipparini, F., & Mennucci, B. (2024). The OpenMMPol library for polarizable QM/MM calculations of properties and dynamics. The Journal of Chemical Physics, 160(13), Article 13. https://doi.org/10.1063/5.0198251
    7. Braun, A., Kohler, M., Langer, S., & Walk, H. (2024). Convergence rates for shallow neural networks learned by gradient descent. Bernoulli, 30(1), Article 1. https://doi.org/10.3150/23-bej1605
    8. Buchfink, P., Glas, S., Haasdonk, B., & Unger, B. (2024). Model reduction on manifolds: A differential geometric framework (2024 Physica D, Hrsg.). https://arxiv.org/abs/2312.01963
    9. Claeys, X., Hassan, M., & Stamm, B. (2024). Continuity estimates for Riesz potentials on polygonal boundaries. Partial Differential Equations and Applications. https://doi.org/10.1007/s42985-024-00280-4
    10. Corso, T. C., Hassan, M., Jha, A., & Stamm, B. (2024). An $L^2$-maximum principle for circular arcs on the disk.
    11. Döppel, F., Wenzel, T., Herkert, R., Haasdonk, B., & Votsmeier, M. (2024). Goal‐Oriented Two‐Layered Kernel Models as Automated Surrogates for Surface Kinetics in Reactor Simulations. Chemie Ingenieur Technik, 96(6), Article 6. https://doi.org/10.1002/cite.202300178
    12. Ghosh, T., Bringedal, C., Rohde, C., & Helmig, R. (2024). A phase-field approach to model evaporation from porous media: Modeling and upscaling. https://arxiv.org/abs/2112.13104
    13. Giannoulis, I., Schmidt, B., & Schneider, G. (2024). NLS approximation for a scalar FPUT system on a 2D square lattice with a cubic nonlinearity. J. Math. Anal. Appl., 540(2), Article 2. https://doi.org/10.1016/j.jmaa.2024.128625
    14. Hammer, M., Wenzel, T., Santin, G., Meszaros-Beller, L., Little, J. P., Haasdonk, B., & Schmitt, S. (2024). A new method to design energy-conserving surrogate models for the coupled, nonlinear responses of intervertebral discs. Biomechanics and Modeling in Mechanobiology, 23(3), Article 3. https://doi.org/10.1007/s10237-023-01804-4
    15. Herkert, R., Buchfink, P., Wenzel, T., Haasdonk, B., Toktaliev, P., & Iliev, O. (2024). Greedy Kernel Methods for Approximating Breakthrough Curves for Reactive Flow from 3D Porous Geometry Data. Mathematics, 12(13), Article 13. https://doi.org/10.3390/math12132111
    16. Herkert, R. R. (2024). Replication Code for: Greedy Kernel Methods for Approximating Breakthrough Curves for Reactive Flow from 3D Porous Geometry Data. https://doi.org/10.18419/darus-4227
    17. Homs-Pons, C., Lautenschlager, R., Schmid, L., Ernst, J., Göddeke, D., Röhrle, O., & Schulte, M. (2024). Coupled Simulation and Parameter Inversion for Neural System  and Electrophysiological Muscle Models. GAMM-Mitteilungen. https://doi.org/10.1002/gamm.202370009
    18. Horsch, M., Chiacchiera, S., Todorov, I., Correia, A., Dey, A., Konchakova, N., Scholze, S., Stephan, S., Tøndel, K., Sarkar, A., Karray, M. H., Al Machot, F., & Schembera, B. (2024). Exploration of core concepts required for mid-and domain-level ontology development to facilitate explainable-AI-readiness of data and models.
    19. Hsiao, G. C., Sánchez-Vizuet, T., & Wendland, W. L. (2024). Boundary-field formulation for transient electromagnetic scattering by dielectric scatterers and coated conductors. In SIAM J. Math. Analysis, to appear. https://doi.org/10.48550/arXiv.2406.05367
    20. Huang, Q., Rohde, C., Yong, W.-A., & Zhang, R. (2024). A hyperbolic relaxation system of the incompressible Navier-Stokes equations with artificial compressibility. https://arxiv.org/abs/2411.15575
    21. Huber, F., Bürkner, P.-C., Göddeke, D., & Schulte, M. (2024). Knowledge-based modeling of simulation behavior for Bayesian optimization. Computational Mechanics, 74(1), Article 1. https://doi.org/10.1007/s00466-023-02427-3
    22. Huber, F., Bürkner, P.-C., Göddeke, D., & Schulte, M. (2024). Knowledge-based modeling of simulation behavior for Bayesian  optimization. Computational Mechanics. https://doi.org/10.1007/s00466-023-02427-3
    23. Hörl, M., & Rohde, C. (2024). Rigorous Derivation of Discrete Fracture Models for Darcy Flow in the Limit of Vanishing Aperture. Netw. Heterog. Media, 19(1), Article 1. https://doi.org/10.3934/nhm.2024006
    24. Jha, A. (2024). Residual-Based a Posteriori Error Estimators for Algebraic Stabilizations. Applied Mathematics Letters, 157, 109192. https://doi.org/10.1016/j.aml.2024.109192
    25. Karabash, I. M., Lienstromberg, C., & Velázquez, J. J. L. (2024). Multi-parameter Hopf bifurcations of rimming flows. https://doi.org/10.48550/arXiv.2406.11690
    26. Keim, J., Konan, H.-C., & Rohde, C. (2024). A Note on Hyperbolic Relaxation of the Navier-Stokes-Cahn-Hilliard system for incompressible two-phase flow. https://arxiv.org/abs/2412.11904
    27. Kharitenko, A., & Scherer, C. W. (2024). On the exactness of a stability test for Lur’e systems with slope-restricted nonlinearities. IEEE Transactions on Automatic Control. https://doi.org/10.1109/TAC.2024.3362859
    28. Kohr, M., Nistor, V., & Wendland, W. L. (2024). The Stokes operator on manifolds with cylindrical ends. Journal of Differential Equations, 407, Article 407. https://doi.org/10.1016/j.jde.2024.06.017
    29. Lindgren, E. B., Avis, H., Miller, A., Stamm, B., Besley, E., & Stace, A. J. (2024). The significance of multipole interactions for the stability of regular structures composed from charged particles. Journal of Colloid and Interface Science, 663, 458–466. https://doi.org/10.1016/j.jcis.2024.02.146
    30. Lukácová-Medvid’ová, M., & Rohde, C. (2024). Mathematical Challenges for the Theory of Hyperbolic Balance Laws in Fluid Mechanics: Complexity, Scales, Randomness.
    31. Magiera, J., & Rohde, C. (2024). A Multiscale Method for Two-Component, Two-Phase Flow with a Neural Network Surrogate. Communications on Applied Mathematics and Computation. https://doi.org/10.1007/s42967-023-00349-8
    32. Maier, B., Göddeke, D., Huber, F., Klotz, T., Röhrle, O., & Schulte, M. (2024). OpenDiHu: An Efficient and Scalable Framework for Biophysical  Simulations of the Neuromuscular System. Journal of Computational Science, 79(102291), Article 102291. https://doi.org/10.1016/j.jocs.2024.102291
    33. Maier, B., Göddeke, D., Huber, F., Klotz, T., Röhrle, O., & Schulte, M. (2024). OpenDiHu: An Efficient and Scalable Framework for Biophysical Simulations of the Neuromuscular System. Journal of Computational Science, 79. https://doi.org/10.1016/j.jocs.2024.102291
    34. Meijer, T. J., Holicki, T., Eijnden, S. J. A. M. van den, Scherer, C. W., & Heemels, W. P. M. H. (2024). The Non-Strict Projection Lemma. IEEE Transactions on Automatic Control, 1–8. https://doi.org/10.1109/TAC.2024.3371374
    35. Mel’nyk, T. A., & Durante, T. (2024). Spectral problems with perturbed Steklov conditions in thick junctions with branched structure. Applicable Analysis, 1–26. https://doi.org/10.1080/00036811.2024.2322644
    36. Mel’nyk, T., & Rohde, C. (2024). Asymptotic expansion for convection-dominated transport in a thin graph-like junction. Analysis and Applications, 22 (05), 833–879. https://doi.org/10.1142/S0219530524500040
    37. Mel’nyk, T., & Rohde, C. (2024). Asymptotic approximations for semilinear parabolic convection-dominated transport problems in thin graph-like networks. J. Math. Anal. Appl., 529(1), Article 1. https://doi.org/10.1016/j.jmaa.2023.127587
    38. Mel’nyk, T., & Rohde, C. (2024). Reduced-dimensional modelling for nonlinear convection-dominated flow in cylindric domains. Nonlinear Differ. Equ. Appl., 31:105. https://doi.org/10.1007/s00030-024-00997-6
    39. Mel’nyk, T., & Rohde, C. (2024). Muskat-Leverett two-phase flow in thin cylindric porous media: Asymptotic approach. https://arxiv.org/abs/2411.02923
    40. Mel’nyk, T., & Rohde, C. (2024). Puiseux asymptotic expansions for convection-dominated transport problems in thin graph-like networks: strong boundary interactions. Asymptotic Analysis, 137, 27–52. https://doi.org/10.3233/ASY-231876
    41. Miao, Y., Rohde, C., & Tang, H. (2024). Well-posedness for a stochastic Camassa-Holm type equation with higher order nonlinearities. Stoch. Partial Differ. Equ. Anal. Comput., 12(1), Article 1. https://doi.org/10.1007/s40072-023-00291-z
    42. Morrison, K., Degeratu, A., Itskov, V., & Curto, C. (2024). Diversity of Emergent Dynamics in Competitive Threshold-Linear Networks. SIAM journal on applied dynamical systems, 23(1), Article 1. https://doi.org/10.1137/22M1541666
    43. Musco, F., & Barth, A. (2024). Deep learning methods for stochastic Galerkin approximations of elliptic random PDEs. https://arxiv.org/abs/2409.08063
    44. Nitzsche, M., & Hahn, B. N. (2024). Dynamic image reconstruction in MPI with RESESOP-Kaczmarz. https://doi.org/10.18416/IJMPI.2024.2411002
    45. Nottoli, M., Herbst, M. F., Mikhalev, A., Jha, A., Lipparini, F., & Stamm, B. (2024). ddX: Polarizable continuum solvation from small molecules to proteins. WIREs Computational Molecular Science. https://doi.org/10.1002/wcms.1726
    46. Nottoli, M., Vanich, E., Cupellini, L., Scalmani, G., Pelosi, C., & Lipparini, F. (2024). Importance of Polarizable Embedding for Computing Optical Rotation: The Case of Camphor in Ethanol. The Journal of Physical Chemistry Letters, 7992–7999. https://doi.org/10.1021/acs.jpclett.4c01550
    47. Ruan, L., & Rybak, I. (2024). Stokes-Brinkman-Darcy models for coupled fluid-porous systems: derivation, analysis and validation. Appl. Math. Comp.  (submitted).
    48. Schollenberger, T., von Wolff, L., Bringedal, C., Pop, I. S., Rohde, C., & Helmig, R. (2024). Investigation of Different Throat Concepts for Precipitation Processes in Saturated Pore-Network Models. Transport in Porous Media. https://doi.org/10.1007/s11242-024-02125-5
    49. Strohbeck, P., Discacciati, M., & Rybak, I. (2024). Optimized Schwarz method for the Stokes-Darcy problem with generalized interface conditions. J. Comput. Phys. (submitted).
    50. Strohbeck, P., & Rybak, I. (2024). Efficient preconditioners for coupled Stokes-Darcy problems with MAC scheme: Spectral analysis and numerical study. J. Sci. Comput. (submitted).
    51. Theisen, L., & Stamm, B. (2024). A Scalable Two-Level Domain Decomposition Eigensolver for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains. SIAM Journal on Scientific Computing, 46(5), Article 5. https://doi.org/10.1137/23m161848x
    52. Wendland, W. L. (2024). On the construction of the Stokes flow in a domain with cylindrical ends. Math. Meth. Appl. Sci., 1–6. https://doi.org/10.1002/mma.10106
    53. Wenzel, T., Haasdonk, B., Kleikamp, H., Ohlberger, M., & Schindler, F. (2024). Application of Deep Kernel Models for Certified and Adaptive RB-ML-ROM Surrogate Modeling. In I. Lirkov & S. Margenov (Hrsg.), Large-Scale Scientific Computations (S. 117--125). Springer Nature Switzerland.
  3. 2023

    1. Afşer, H., Györfi, L., & Walk, H. (2023). Classification With Repeated Observations. IEEE Signal Processing Letters, 30, 1522–1526. https://doi.org/10.1109/LSP.2023.3326057
    2. Arridge, S. R., Burger, M., Hahn, B., & Quinto, E. T. (2023). Tomographic Inverse Problems: Mathematical Challenges and Novel Applications. Oberwolfach Reports, 20(2), Article 2. https://doi.org/10.4171/owr/2023/21
    3. Bamer, F., Ebrahem, F., Markert, B., & Stamm, B. (2023). Molecular Mechanics of Disordered Solids. Archives of Computational Methods in Engineering, 30(3), Article 3. https://doi.org/10.1007/s11831-022-09861-1
    4. Berberich, J., Scherer, C. W., & Allgower, F. (2023). Combining Prior Knowledge and Data for Robust Controller Design. IEEE Transactions on Automatic Control, 68(8), Article 8. https://doi.org/10.1109/tac.2022.3209342
    5. Beschle, C. A., & Barth, A. (2023). Quasi continuous level Monte Carlo for random elliptic PDEs.
    6. Brehmer, P., Herbst, M. F., Wessel, S., Rizzi, M., & Stamm, B. (2023). Reduced basis surrogates for quantum spin systems based on tensor networks. Physical Review E. https://doi.org/10.1103/PhysRevE.108.025306
    7. Brennenstuhl, M., Otto, R., Schembera, B., & Eicker, U. (2023). Optimized Dimensioning and Economic Assessment of Decentralized Hybrid Small Wind and PV Power Systems for Residential Buildings. https://www.researchsquare.com/article/rs-3677621/latest.pdf
    8. Buchfink, P., Glas, S., & Haasdonk, B. (2023). Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds. https://arxiv.org/abs/2312.00724
    9. Burbulla, S., Formaggia, L., Rohde, C., & Scotti, A. (2023). Modeling fracture propagation in poro-elastic media combining phase-field and discrete fracture models. Comput. Methods Appl. Mech. Engrg., 403. https://doi.org/10.1016/j.cma.2022.115699
    10. Burbulla, S., Hörl, M., & Rohde, C. (2023). Flow in Porous Media with Fractures of Varying Aperture. SIAM J. Sci. Comput, 45(4), Article 4. https://doi.org/10.1137/22M1510406
    11. Cancès, E., Herbst, M. F., Kemlin, G., Levitt, A., & Stamm, B. (2023). Numerical stability and efficiency of response property calculations in density functional theory. Letters in Mathematical Physics. https://doi.org/10.1007/s11005-023-01645-3
    12. Cancès, E., Herbst, M. F., Kemlin, G., Levitt, A., & Stamm, B. (2023). Numerical stability and efficiency of response property calculations in density functional theory. Letters in Mathematical Physics, 113(1), Article 1. https://doi.org/10.1007/s11005-023-01645-3
    13. Cerejeiras, P., Ferreira, M., Kähler, U., & Wirth, J. (2023). Global Operator Calculus on Spin Groups. Journal of Fourier Analysis and Applications, 29(3), Article 3. https://doi.org/10.1007/s00041-023-10015-5
    14. Dippon, J., Gwinner, J., Khan, A. A., & Sama, M. (2023). A new regularized stochastic approximation framework for stochastic inverse problems. Nonlinear Anal. Real World Appl., 73, Paper No. 103869, 29. https://doi.org/10.1016/j.nonrwa.2023.103869
    15. Dusson, G., Sigal, I. M., & Stamm, B. (2023). Analysis of the Feshbach-Schur method for the Fourier spectral discretizations of Schrödinger operators. Mathematics of Computation, 92(340), Article 340. https://doi.org/10.1090/mcom/3774
    16. Eggenweiler, E., Nickl, J., & Rybak, I. (2023). Justification of generalized interface conditions for Stokes-Darcy problems. In E. Franck, J. Fuhrmann, V. Michel-Dansac, & L. Navoret (Hrsg.), Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems (S. 275–283). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-40864-9_22
    17. Eggenweiler, E., & Rybak, I. (2023). Higher-order coupling conditions for arbitrary flows in Stokes-Darcy systems. J. Fluid Mech. (submitted).
    18. Fukuizumi, R., Gao, Y., Schneider, G., & Takahashi, M. (2023). Pattern formation in 2D stochastic anisotropic Swift-Hohenberg equation. Interdiscip. Inform. Sci., 29(1), Article 1. https://doi.org/10.4036/iis.2023.a.03
    19. Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Consistent and Asymptotic-Preserving Finite-Volume Robin Transmission Conditions for Singularly Perturbed Elliptic Equations. In S. C. Brenner, E. Chung, A. Klawonn, F. Kwok, J. Xu, & J. Zou (Hrsg.), Domain Decomposition Methods in Science and Engineering XXVI (S. 443--450). Springer International Publishing.
    20. Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations. SIAM J. Sci. Comput., 45(1), Article 1. https://doi.org/10.1137/21M1415005
    21. Gladbach, P., Jansen, J., & Lienstromberg, C. (2023). Non-Newtonian thin-film equations: global existence of solutions, gradient-flow structure and guaranteed lift-off. https://doi.org/10.48550/ARXIV.2301.10300
    22. Gramlich, D., Holicki, T., Scherer, C. W., & Ebenbauer, C. (2023). A Structure Exploiting SDP Solver for Robust Controller Synthesis. IEEE Control Syst. Lett., 7, 1831–1836. https://doi.org/10.1109/LCSYS.2023.3277314
    23. Gramlich, D., Pauli, P., Scherer, C. W., Allgöwer, F., & Ebenbauer, C. (2023). Convolutional Neural Networks as 2-D systems. https://doi.org/10.48550/ARXIV.2303.03042
    24. Gramlich, D., Scherer, C. W., Häring, H., & Ebenbauer, C. (2023). Synthesis of constrained robust feedback policies and model predictive control. https://doi.org/10.48550/ARXIV.2310.11404
    25. Griesemer, M., & Hofacker, M. (2023). On the weakness of short-range interactions in Fermi gases. Lett. Math. Phys., 113(1), Article 1. https://doi.org/10.1007/s11005-022-01624-0
    26. Györfi, L., Linder, T., & Walk, H. (2023). Lossless Transformations and Excess Risk Bounds in Statistical Inference. Entropy, 25(10), Article 10. https://doi.org/10.3390/e25101394
    27. Haas, T., de Rijk, B., & Schneider, G. (2023). Validity of Whitham’s modulation equations for dissipative systems with a conservation law: phase dynamics in a generalized Ginzburg-Landau system. Indiana Univ. Math. J., 72(1), Article 1. https://doi.org/10.1512/iumj.2023.72.9297
    28. Haasdonk, B., Kleikamp, H., Ohlberger, M., Schindler, F., & Wenzel, T. (2023). A New Certified Hierarchical and Adaptive RB-ML-ROM Surrogate Model for Parametrized PDEs. SIAM Journal on Scientific Computing, 45(3), Article 3. https://doi.org/10.1137/22m1493318
    29. Hahn, B., & Wirth, B. (2023). Convex reconstruction of moving particles with inexact motion model. PAMM, 23(2), Article 2. https://doi.org/10.1002/pamm.202300054
    30. Hahn, B. N., Quinto, E. T., & Rigaud, G. (2023). Foreword to special issue of Inverse Problems on modern challenges in imaging. Inverse Problems, 39(3), Article 3. https://doi.org/10.1088/1361-6420/acb569
    31. Hahn, B. N., Rigaud, G., & Schmähl, R. (2023). A class of regularizations based on nonlinear isotropic diffusion for inverse problems. IMA Journal of Numerical Analysis. https://doi.org/10.1093/imanum/drad002
    32. Hewing, L., Gramlich, D., Verhoek, C., Polonio, R., Veenman, J., Ardura, C., Tóth, R., Ebenbauer, C., Scherer, C., & Preda, V. (2023, Juli). Enhancing the Guidance, Navigation and Control of Autonomous Parafoils using Machine Learning Methods. Papers of ESA GNC-ICATT 2023. https://doi.org/10.5270/esa-gnc-icatt-2023-135
    33. Heß, M., & Schneider, G. (2023). A robust way to justify the derivative NLS approximation. Z. Angew. Math. Phys., 74(6), Article 6. https://doi.org/10.1007/s00033-023-02121-7
    34. Hilder, B., de Rijk, B., & Schneider, G. (2023). Moving modulating pulse and front solutions of permanent form in a FPU model with nearest and next-to-nearest neighbor interaction. SIAM J. Appl. Dyn. Syst., 22(2), Article 2. https://doi.org/10.1137/22M1502902
    35. Hilder, B., de Rijk, B., & Schneider, G. (2023). Nonlinear stability of periodic roll solutions in the real Ginzburg-Landau equation against $C_ub^m$-perturbations. Comm. Math. Phys., 400(1), Article 1. https://doi.org/10.1007/s00220-022-04619-z
    36. Holicki, T., & Scherer, C. W. (2023). IQC based analysis and estimator design for discrete-time systems affected by impulsive uncertainties. Nonlinear Anal. Hybri., 50, 101399. https://doi.org/10.1016/j.nahs.2023.101399
    37. Holicki, T., & Scherer, C. W. (2023). Input-Output-Data-Enhanced Robust Analysis via Lifting. IFAC-PapersOnLine, 56(2), Article 2. https://doi.org/10.1016/j.ifacol.2023.10.047
    38. Holzmüller, D., Zaverkin, V., Kästner, J., & Steinwart, I. (2023). A Framework and Benchmark for Deep Batch Active Learning for Regression. Journal of Machine Learning Research, 24(164), Article 164. http://jmlr.org/papers/v24/22-0937.html
    39. Hornischer, N. (2023). Model Order Reduction with Dynamically Transformed Modes for Electrophysiological Simulations. GAMM Archive for Students.
    40. Horsch, M., Schembera, B., & DFG, M. (2023). Epistemic metadata in molecular modelling: First-stage case-study report (10 cases). In Inprodat eV, Kaiserslautern, Tech. Rep (Inprodat eV, Kaiserslautern, Tech. Rep). https://www.researchgate.net/profile/Martin-Horsch/publication/366974408_Epistemic_metadata_in_molecular_modelling_First-stage_case-study_report_10_cases/links/63bc41e4a03100368a6645a6/Epistemic-metadata-in-molecular-modelling-First-stage-case-study-report-10-cases.pdf
    41. Jansen, J., Lienstromberg, C., & Nik, K. (2023). Long-Time Behavior and Stability for Quasilinear Doubly Degenerate Parabolic Equations of Higher Order. SIAM Journal on Mathematical Analysis, 55(2), Article 2. https://doi.org/10.1137/22M1491137
    42. Jha, A., John, V., & Knobloch, P. (2023). Adaptive Grids in the Context of Algebraic Stabilizations for Convection-Diffusion-Reaction Equations. SIAM Journal on Scientific Computing, 45(4), Article 4. https://doi.org/10.1137/21m1466360
    43. Jha, A., Nottoli, M., Mikhalev, A., Quan, C., & Stamm, B. (2023). Linear Scaling Computation of Forces for the Domain-Decomposition Linear Poisson--Boltzmann Method. The Journal of Chemical Physics, 158, 104105. https://doi.org/10.1063/5.0141025
    44. Keckstein, S., Dippon, J., Hudelist, G., Koninckx, P., Condous, G., Schroeder, L., & Keckstein, J. (2023). Sonomorphologic Changes in Colorectal Deep Endometriosis: The Long-Term Impact of Age and Hormonal Treatment. Ultraschall in der Medizin - European Journal of Ultrasound, EFirst, Article EFirst. https://doi.org/10.1055/a-2209-5653
    45. Keim, J., Schwarz, A., Chiocchetti, S., Rohde, C., & Beck, A. (2023). A Reinforcement Learning Based Slope Limiter for Two-Dimensional Finite Volume Schemes. https://doi.org/10.13140/RG.2.2.18046.87363
    46. Keim, J., Munz, C.-D., & Rohde, C. (2023). A Relaxation Model for the Non-Isothermal Navier-Stokes-Korteweg Equations in Confined Domains. J. Comput. Phys., 474, 111830. https://doi.org/10.1016/j.jcp.2022.111830
    47. Kharitenko, A., & Scherer, C. (2023). Time-varying Zames–Falb multipliers for LTI Systems are superfluous. Automatica, 147, 110577. https://doi.org/10.1016/j.automatica.2022.110577
    48. Kohr, M., Nistor, V., & Wendland, W. L. (2023). Layer potentials and essentially translation invariant pseudodifferential operators on manifolds with cylindrical ends. In Postpandemic Operator Theory (S. 61–115). Springer-Verlag Berlin. https://doi.org/10.48550/arXiv.2308.06308
    49. Kröker, I., Oladyshkin, S., & Rybak, I. (2023). Global sensitivity analysis using multi-resolution polynomial chaos expansion for coupled Stokes-Darcy flow problems. Comput. Geosci. https://doi.org/10.1007/s10596-023-10236-z
    50. Lienstromberg, C., Schiffer, S., & Schubert, R. (2023). A data-driven approach to viscous fluid mechanics: the              stationary case. Arch. Ration. Mech. Anal., 247(2), Article 2. https://doi.org/10.1007/s00205-023-01849-w
    51. Lienstromberg, C., Schiffer, S., & Schubert, R. (2023). A variational approach to the non-newtonian Navier-Stokes equations. https://doi.org/doi:10.48550/ARXIV.2312.03546
    52. Lienstromberg, C., & Velázquez, J. J. L. (2023). Long-time asymptotics and regularity estimates for weak solutions to a doubly degenerate thin-film equation in the Taylor-Couette setting. arXiv. https://doi.org/10.48550/ARXIV.2203.00075
    53. Maier, D., Reichel, W., & Schneider, G. (2023). Breather solutions for a semilinear Klein-Gordon equation on a periodic metric graph. J. Math. Anal. Appl., 528(2), Article 2. https://doi.org/10.1016/j.jmaa.2023.127520
    54. Meijer, T. J., Holicki, T., Eijnden, S. J. A. M. van den, Scherer, C. W., & Heemels, W. P. M. H. (2023). The Non-Strict Projection Lemma. arXiv. https://doi.org/10.48550/ARXIV.2305.08735
    55. Mel’nyk, T. (2023). Complex Analysis (No. 1; Nummer 1). Springer Cham. https://doi.org/10.1007/978-3-031-39615-1
    56. Mel’nyk, T. A. (2023). Asymptotic analysis of spectral problems in thick junctions with the branched fractal structure. Mathematical Methods in the Applied Sciences, 46(3), Article 3. https://doi.org/10.1002/mma.8692
    57. Merkle, R., & Barth, A. (2023). On Properties and Applications of Gaussian Subordinated Lévy Fields. Methodology and Computing in Applied Probability, 25, 62. https://doi.org/10.1007/s11009-023-10033-2
    58. Miller, C. T., Gray, W. G., Kees, C. E., Rybak, I., & Shepherd, B. J. (2023). Correction to: Modelling Sediment Transport in Three-Phase Surface Water Systems. J. Hydraul. Res., 61, 168–171. https://doi.org/10.1080/00221686.2022.2107580
    59. Mohammadi, F., Eggenweiler, E., Flemisch, B., Oladyshkin, S., Rybak, I., Schneider, M., & Weishaupt, K. (2023). A Surrogate-Assisted Uncertainty-Aware Bayesian Validation Framework and its Application to Coupling Free Flow and Porous-Medium Flow. Comput. Geosci. https://doi.org/10.1007/s10596-023-10228-z
    60. Morato, M. M., Holicki, T., & Scherer, C. W. (2023). Stabilizing Model Predictive Control Synthesis using Integral Quadratic Constraints and Full-Block Multipliers. Int. J. Robust Nonlin. https://doi.org/10.1002/rnc.6952
    61. Nagy, P.-A., & Semmelmann, U. (2023). Eigenvalue estimates for 3-Sasaki structures.
    62. Nottoli, M., Bondanza, M., Mazzeo, P., Cupellini, L., Curutchet, C., Loco, D., Lagardère, L., Piquemal, J., Mennucci, B., & Lipparini, F. (2023). QM/AMOEBA description of properties and dynamics of embedded molecules. WIREs Computational Molecular Science, 13(6), Article 6. https://doi.org/10.1002/wcms.1674
    63. Pelinovsky, D., & Schneider, G. (2023). KP-II approximation for a scalar Fermi-Pasta-Ul system on a 2D square lattice. SIAM J. Appl. Math., 83(1), Article 1. https://doi.org/10.1137/22M1509369
    64. Pes, F., Polack, É., Mazzeo, P., Dusson, G., Stamm, B., & Lipparini, F. (2023). A Quasi Time-Reversible Scheme Based on Density Matrix Extrapolation on the Grassmann Manifold for Born–Oppenheimer Molecular Dynamics. The Journal of Physical Chemistry Letters, 9720--9726. https://doi.org/10.1021/acs.jpclett.3c02098
    65. Ruan, L., & Rybak, I. (2023). Stokes-Brinkman-Darcy models for coupled free-flow and porous-medium systems. In E. Franck, J. Fuhrmann, V. Michel-Dansac, & L. Navoret (Hrsg.), Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems (S. 365–373). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-40864-9_31
    66. Rösinger, C. A., & Scherer, C. W. (2023). Gain-Scheduling Controller Synthesis for Networked Systems with Full Block Scalings. https://doi.org/10.1109/TAC.2023.3329851
    67. Rösinger, C. A., & Scherer, C. W. (2023). Gain-Scheduling Controller Synthesis for Nested Systems With Full Block Scalings. IEEE Transactions on Automatic Control, 1–16. https://doi.org/10.1109/TAC.2023.3329851
    68. Santin, G., Wenzel, T., & Haasdonk, B. (2023). On the optimality of target-data-dependent kernel greedy interpolation in Sobolev Reproducing Kernel Hilbert Spaces. https://arxiv.org/abs/2307.09811
    69. Schembera, B., Wübbeling, F., Koprucki, T., Biedinger, C., Reidelbach, M., Schmidt, B., Göddeke, D., & Fiedler, J. (2023). Building Ontologies and Knowledge Graphs for Mathematics and its Applications. Proceedings of the Conference on Research Data Infrastructure, 1. https://doi.org/10.52825/cordi.v1i.255
    70. Scherer, C. W. (2023). Robust Exponential Stability and Invariance Guarantees with General Dynamic O’Shea-Zames-Falb Multipliers. https://doi.org/10.48550/ARXIV.2306.00571
    71. Scherer, C. W., Ebenbauer, C., & Holicki, T. (2023). Optimization Algorithm Synthesis based on Integral Quadratic Constraints: A Tutorial. https://doi.org/10.48550/ARXIV.2306.00565
    72. Schwahn, P., Semmelmann, U., & Weingart, G. (2023). Stability of the Non-Symmetric Space $E_7/PSO(8)$.
    73. Seus, D., Radu, F. A., & Rohde, C. (2023). Towards hybrid two-phase modelling using linear domain decomposition. Numer. Methods Partial Differential Equations, 39(1), Article 1. https://doi.org/10.1002/num.22906
    74. Strohbeck, P., Eggenweiler, E., & Rybak, I. (2023). A modification of the Beavers-Joseph condition for arbitrary flows to the fluid-porous interface. Transp. Porous Med., 147(3), Article 3. https://doi.org/10.1007/s11242-023-01919-3
    75. Strohbeck, P., Riethmüller, C., Göddeke, D., & Rybak, I. (2023). Robust and efficient preconditioners for Stokes-Darcy problems. In E. Franck, J. Fuhrmann, V. Michel-Dansac, & L. Navoret (Hrsg.), Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems (S. 375–383). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-40864-9_32
    76. Strohbeck, P., Riethmüller, C., Göddeke, D., & Rybak, I. (2023). Robust and Efficient Preconditioners for Stokes--Darcy Problems. In E. Franck, J. Fuhrmann, V. Michel-Dansac, & L. Navoret (Hrsg.), Finite Volumes for Complex Applications X---Volume 1, Elliptic and Parabolic Problems (S. 375--383). Springer Nature Switzerland.
    77. Taha, F. A., Yan, S., & Bitar, E. (2023). A Distributionally Robust Approach to Regret Optimal Control using the Wasserstein Distance. 2023 62nd IEEE Conference on Decision and Control (CDC), 2768–2775. https://doi.org/10.1109/CDC49753.2023.10384311
    78. Theisen, L., & Stamm, B. (2023). A Scalable Two-Level Domain Decomposition Eigensolver for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains. https://doi.org/10.48550/arXiv.2311.08757
    79. Wendland, W. L. (2023). My relation with GAMM (G. Rundbrief, Hrsg.; No. 1). GAMM Rundbrief. https://www.gamm.org/wp-content/uploads/2024/03/GAMM_1-23_web.pdf
    80. Wenzel, T., Santin, G., & Haasdonk, B. (2023). Analysis of Target Data-Dependent Greedy Kernel Algorithms: Convergence Rates for f -, f · P - and f /P -greedy. Constructive Approximation, 57(1), Article 1. https://doi.org/10.1007/s00365-022-09592-3
    81. Wenzel, T., Santin, G., & Haasdonk, B. (2023). Stability of convergence rates: Kernel interpolation on non-Lipschitz domains (2024 IMA Journal of Numerical Analysis, 44(3):1-22, Hrsg.). https://doi.org/10.1093/imanum/drae014
    82. Zaverkin, V., Holzmüller, D., Bonfirraro, L., & Kästner, J. (2023). Transfer learning for chemically accurate interatomic neural network potentials. Phys. Chem. Chem. Phys., 25(7), Article 7. https://doi.org/10.1039/D2CP05793J
  4. 2022

    1. Agullo, E., Altenbernd, M., Anzt, H., Bautista-Gomez, L., Benacchio, T., Bonaventura, L., Bungartz, H.-J., Chatterjee, S., Ciorba, F. M., DeBardeleben, N., Drzisga, D., Eibl, S., Engelmann, C., Gansterer, W. N., Giraud, L., Göddeke, D., Heisig, M., Jézéquel, F., Kohl, N., … Wohlmuth, B. (2022). Resiliency in numerical algorithm design for extreme scale simulations. The International Journal of High Performance ComputingApplications, 36(2), Article 2. https://doi.org/10.1177/10943420211055188
    2. Assenmacher, O., Bruell, G., & Lienstromberg, C. (2022). Non-Newtonian two-phase thin-film problem: local existence,              uniqueness, and stability. Comm. Partial Differential Equations, 47(1), Article 1. https://doi.org/10.1080/03605302.2021.1957929
    3. Barth, A., & Stein, A. (2022). Numerical analysis for time-dependent advection-diffusion problems with random discontinuous coefficients. ESAIM: M2AN, 56(5), Article 5. https://doi.org/10.1051/m2an/2022054
    4. Benner, P., Burger, M., Göddeke, D., Görgen, C., Himpe, C., Heiland, J., Koprucki, T., Ohlberger, M., Rave, S., Reiselbach, M., Saak, J., Schöbel, A., Tabelow, K., & Weber, M. (2022). Die mathematische Forschungsdateninitiative in der NFDI:  MaRDI (Mathematical Research Data Initiative). GAMM Rundbrief, 2022(1), Article 1.
    5. Berberich, J., Scherer, C. W., & Allgower, F. (2022). Combining Prior Knowledge and Data for Robust Controller Design. IEEE Transactions on Automatic Control, 1--16. https://doi.org/10.1109/tac.2022.3209342
    6. Beschle, C. (2022). Uncertainty visualization: Fundamentals and recent developments, code to produce data and visuals used in Section 5. https://doi.org/10.18419/darus-3154
    7. Beschle, C., & Barth, A. (2022). Uncertainty visualization: Fundamentals and recent developments, code to produce data and visuals used in Section 5. https://doi.org/10.18419/darus-3154
    8. Beschle, C., & Kovács, B. (2022). Stability and error estimates for non-linear Cahn–Hilliard-type equations on evolving surfaces. Numerische Mathematik, 1--48. https://doi.org/10.1007/s00211-022-01280-5
    9. Boege, T., Fritze, R., Görgen, C., Hanselman, J., Iglezakis, D., Kastner, L., Koprucki, T., Krause, T., Lehrenfeld, C., Polla, S., Reidelbach, M., Riedel, C., Saak, J., Schembera, B., Tabelow, K., & Weber, M. (2022). Research-Data Management Planning in the German Mathematical Community. arXiv. https://doi.org/10.48550/ARXIV.2211.12071
    10. Buchfinck, P., Glas, S., & Haasdonk, B. (2022). Optimal Bases for Symplectic Model Order Reduction of Canonizable Linear Hamiltonian Systems.
    11. Burbulla, S., Dedner, A., Hörl, M., & Rohde, C. (2022). Dune-MMesh: The Dune Grid Module for Moving Interfaces. J. Open Source Softw., 7(74), Article 74. https://doi.org/10.21105/joss.03959
    12. Burbulla, S., & Rohde, C. (2022). A finite-volume moving-mesh method for two-phase flow in fracturing porous media. J. Comput. Phys., 111031. https://doi.org/10.1016/j.jcp.2022.111031
    13. Cekić, M., Lefeuvre, T., Moroianu, A., & Semmelmann, U. (2022). Towards Brin’s conjecture on frame flow ergodicity: new progress and perspectives.
    14. Dusson, G., Sigal, I., & Stamm, B. (2022). Analysis of the Feshbach–Schur method for the Fourier spectral discretizations of Schrödinger operators. Mathematics of Computation, 92(339), Article 339. https://doi.org/10.1090/mcom/3774
    15. Echterdiek, F., Kitterer, D., Dippon, J., Ott, M., Paul, G., Latus, J., & Schwenger, V. (2022). Outcome of kidney transplantations from ≥65‐year‐old deceased donors with acute kidney injury. Clinical Transplantation, 36(5), Article 5. https://doi.org/10.1111/ctr.14612
    16. Echterdiek, F., Tilgener, C., Dippon, J., Kitterer, D., Scheder-Bieschin, J., Paul, G., Ott, M., Humke, U., Schwenger, V., & Latus, J. (2022). Impact of the explanting surgeon’s impression of donor arteriosclerosis on outcome of kidney transplantations from donors aged ≥65 years. Langenbeck’s Archives of Surgery, 407(2), Article 2. https://doi.org/10.1007/s00423-021-02383-7
    17. Eggenweiler, E., Discacciati, M., & Rybak, I. (2022). Analysis of the Stokes-Darcy problem with generalised interface conditions. ESAIM Math. Model. Numer. Anal., 56, 727–742. https://doi.org/10.1051/m2an/2022025
    18. Eggenweiler, E. (2022). Interface conditions for arbitrary flows in Stokes-Darcy systems : derivation, analysis and validation. Universität Stuttgart. https://doi.org/10.18419/OPUS-12573
    19. Fiedler, C., Scherer, C. W., & Trimpe, S. (2022, Dezember). Learning Functions and Uncertainty Sets Using Geometrically Constrained Kernel Regression. 61st IEEE Conf. Decision and Control. https://doi.org/10.1109/cdc51059.2022.9993144
    20. Focks, T., Bamer, F., Markert, B., Wu, Z., & Stamm, B. (2022). Displacement field splitting of defective hexagonal lattices. Physical Review B. https://doi.org/10.1103/PhysRevB.106.014105
    21. Frank, R. L., Laptev, A., & Weidl, T. (2022). An improved one-dimensional Hardy inequality. J. Math. Sci. (N.Y.), 268(3, Problems in mathematical analysis. No. 118), Article 3, Problems in mathematical analysis. No. 118. https://doi.org/10.1007/s10958-022-06199-8
    22. Frank, R., Laptev, A., & Weidl, T. (2022). Schrödinger Operators: Eigenvalues and Lieb–Thirring Inequalities. In Cambridge Studies in Advanced Mathematics (S. 512).
    23. Fukuizumi, R., & Schneider, G. (2022). Interchanging space and time in nonlinear optics modeling and dispersion management models. J. Nonlinear Sci., 32(3), Article 3. https://doi.org/10.1007/s00332-022-09788-8
    24. Gavrilenko, P., Haasdonk, B., Iliev, O., Ohlberger, M., Schindler, F., Toktaliev, P., Wenzel, T., & Youssef, M. (2022). A Full Order, Reduced Order and Machine Learning Model Pipeline for Efficient Prediction of Reactive Flows. In I. Lirkov & S. Margenov (Hrsg.), Large-Scale Scientific Computing (S. 378--386). Springer International Publishing.
    25. Gilg, S., Schneider, G., & Uecker, H. (2022). Nonlinear dynamics of modulated waves on graphene like quantum graphs. Math. Nachr., 295(11), Article 11. https://doi.org/10.1002/mana.202100009
    26. Gramlich, D., Ebenbauer, C., & Scherer, C. W. (2022). Synthesis of Accelerated Gradient Algorithms for Optimization and Saddle Point Problems using Lyapunov functions. Syst. Control Lett., 165. https://arxiv.org/abs/2006.09946
    27. Gramlich, D., Scherer, C. W., & Ebenbauer, C. (2022). Robust Differential Dynamic Programming. 61st IEEE Conf. Decision and Control. https://doi.org/10.1109/cdc51059.2022.9992569
    28. Griesemer, M. (2022). Ground states of atoms and molecules in non-relativistic QED. In The Physics and Mathematics of Elliott Lieb (S. 437--450). EMS Press. https://doi.org/10.4171/90-1/18
    29. Griesemer, M., & Hofacker, M. (2022). From Short-Range to Contact Interactions in Two-dimensional Many-Body Quantum Systems. Annales Henri Poincaré, 23(8), Article 8. https://doi.org/10.1007/s00023-021-01149-7
    30. Haasdonk, B., Kleikamp, H., Ohlberger, M., Schindler, F., & Wenzel, T. (2022). A new certified hierarchical and adaptive RB-ML-ROM surrogate model for parametrized PDEs. arXiv. https://doi.org/10.48550/ARXIV.2204.13454
    31. Hahn, B. N., Garrido, M.-L. K., Klingenberg, C., & Warnecke, S. (2022). Using the Navier-Cauchy equation for motion estimation in dynamic imaging. Inverse Problems and Imaging, 0(0), Article 0. https://doi.org/10.3934/ipi.2022018
    32. Hassan, M., Williamson, C., Baptiste, J., Braun, S., Stace, A. J., Besley, E., & Stamm, B. (2022). Manipulating Interactions between Dielectric Particles with Electric Fields : A General Electrostatic Many-Body Framework. Journal of Chemical Theory and Computation, 18(10), Article 10. https://doi.org/10.1021/acs.jctc.2c00008
    33. Hilder, B. (2022). Modulating traveling fronts in a dispersive Swift-Hohenberg equation coupled to an additional conservation law. J. Math. Anal. Appl., 513(2), Article 2. https://doi.org/10.1016/j.jmaa.2022.126224
    34. Hilder, B., & Sharma, U. (2022). Quantitative coarse-graining of Markov chains.
    35. Holicki, T. (2022). A Complete Analysis and Design Framework for Linear Impulsive and Related Hybrid Systems [University of Stuttgart]. https://doi.org/10.18419/opus-12158
    36. Holicki, T., & Scherer, C. W. (2022). A Dynamic S-Procedure for Dynamic Uncertainties. IFAC-PapersOnline, 55(25), Article 25. https://doi.org/10.1016/j.ifacol.2022.09.331
    37. Holicki, T., & Scherer, C. W. (2022). IQC Based Analysis and Estimator Design for Discrete-Time Systems Affected by Impulsive Uncertainties.
    38. Holicki, T., & Scherer, C. W. (2022). Input-Output-Data-Enhanced Robust Analysis via Lifting.
    39. Holzmüller, D., & Steinwart, I. (2022). Training two-layer ReLU networks with gradient descent is inconsistent. Journal of Machine Learning Research, 23(181), Article 181. http://jmlr.org/papers/v23/20-830.html
    40. Hornischer, N. (2022). Model Order Reduction with Transformed Modes for Electrophysiological Simulations [Bathesis].
    41. Horsch, M. T., & Schembera, B. (2022). Documentation of epistemic metadata by a mid-level ontology of cognitive processes. Proc. JOWO 2022.
    42. Hsiao, G. C., Sánchez-Vizuet, T., & Wendland, W. L. (2022). A Boundary-Field Formulation for Elastodynamic Scattering. Journal of Elasticity. https://doi.org/10.1007/s10659-022-09964-7
    43. Hägele, D., Schulz, C., Beschle, C., Booth, H., Butt, M., Barth, A., Deussen, O., & Weiskopf, D. (2022). Uncertainty Visualization: Fundamentals and Recent Developments. it - Information Technology, 64(4–5), Article 4–5. https://doi.org/10.1515/itit-2022-0033
    44. Hägele, D., Schulz, C., Beschle, C., Booth, H., Butt, M., Barth, A., Deussen, O., & Weiskopf, D. (2022). Uncertainty visualization : Fundamentals and recent developments. Information Technology, 64(4–5), Article 4–5. https://doi.org/10.1515/itit-2022-0033
    45. Jung, K., Schembera, B., & Gärtner, M. (2022). Best of Both Worlds? Mapping Process Metadata in Digital Humanities and Computational Engineering. Metadata and Semantic Research, 199--205. https://doi.org/10.1007/978-3-030-98876-0_17
    46. Kharitenko, A., & Scherer, C. W. (2022). On the exactness of a stability test for Lur’e systems with slope-restricted nonlinearities.
    47. Klink, M. (2022). Time Error Estimators and Adaptive Time-stepping Schemes [Bathesis].
    48. Klumpp, M., & Schneider, G. (2022). The Schrödinger approximation for the Helmholtz equation if the refractive index is a step function. Wave Motion, 110, Paper No. 102891, 6. https://doi.org/10.1016/j.wavemoti.2022.102891
    49. Klumpp, M., & Schneider, G. (2022). A note on the validity of the Schrödinger approximation for the Helmholtz equation. J. Appl. Anal., 28(1), Article 1. https://doi.org/10.1515/jaa-2021-2058
    50. Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2022). On some mixed-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces. JMAA, 516(1, 126464), Article 1, 126464. https://doi.org/10.1016/j.jmaa.2022.126464
    51. Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2022). Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces. Calc. Var. Partial Differential Equations, 61, Paper No. 198 (2022) 47 pp.
    52. Lienstromberg, C., Pernas-Casta\ no, T., & Velázquez, J. J. L. (2022). Analysis of a two-fluid Taylor-Couette flow with one              non-Newtonian fluid. J. Nonlinear Sci., 32(2), Article 2. https://doi.org/10.1007/s00332-021-09750-0
    53. Lienstromberg, C., Pernas-Casta\no, T., & Velázquez, J. J. L. (2022). Analysis of a two-fluid Taylor-Couette flow with one non-Newtonian fluid. J. Nonlinear Sci., 32(2), Article 2. https://doi.org/10.1007/s00332-021-09750-0
    54. Lienstromberg, C., Schiffer, S., & Schubert, R. (2022). A data-driven approach to viscous fluid mechanics -- the stationary case. https://doi.org/10.48550/ARXIV.2207.00324
    55. Magiera, J., & Rohde, C. (2022). A molecular–continuum multiscale model for inviscid liquid–vapor flow with sharp interfaces. J. Comput. Phys., 111551. https://doi.org/10.1016/j.jcp.2022.111551
    56. Magiera, J., & Rohde, C. (2022). Analysis and Numerics of Sharp and Diffuse Interface Models for Droplet Dynamics. In K. Schulte, C. Tropea, & B. Weigand (Hrsg.), Droplet Dynamics under Extreme Ambient Conditions. Springer International Publishing. https://doi.org/10.1007/978-3-031-09008-0_4
    57. Maier, B., Göddeke, D., Huber, F., Klotz, T., Röhrle, O., & Schulte, M. (2022). OpenDiHu: An Efficient and Scalable Framework for Biophysical Simulations of the Neuromuscular System.
    58. Massa, F., Ostrowski, L., Bassi, F., & Rohde, C. (2022). An artificial Equation of State based Riemann solver for a discontinuous Galerkin discretization of the incompressible Navier–Stokes equations. J. Comput. Phys., 110705. https://doi.org/10.1016/j.jcp.2021.110705
    59. Mehl, L., Beschle, C., Barth, A., & Bruhn, A. (2022). Replication Data for: An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation. https://doi.org/10.18419/darus-2890
    60. Mel’nyk, T., & Klevtsovskiy, A. V. (2022). Asymptotic expansion for the solution of a convection-diffusion problem in a thin graph-like junction. Asymptotic Analysis, 130(3–4), Article 3–4. https://doi.org/10.3233/ASY-221761
    61. Merkle, R., & Barth, A. (2022). Subordinated Gaussian Random Fields in Elliptic Partial Differential Equations. Stoch PDE: Anal Comp. https://doi.org/10.1007/s40072-022-00246-w
    62. Merkle, R., & Barth, A. (2022). On some distributional properties of subordinated Gaussian random fields. Methodol Comput Appl Probab.
    63. Merkle, R., & Barth, A. (2022). Multilevel Monte Carlo estimators for elliptic PDEs with Lévy-type diffusion coefficient. BIT Numer Math. https://doi.org/10.1007/s10543-022-00912-4
    64. Mikhalev, A., Nottoli, M., & Stamm, B. (2022). Linearly scaling computation of ddPCM solvation energy and forces using the fast multipole method. The Journal of Chemical Physics, 157(11), Article 11. https://doi.org/10.1063/5.0104536
    65. Nitzsche, M., Albers, H., Kluth, T., & Hahn, B. (2022). Compensating model imperfections during image reconstruction via Resesop. International Journal on Magnetic Particle Imaging, Vol 8 No 1 Suppl 1 (2022). https://doi.org/10.18416/IJMPI.2022.2203062
    66. Nottoli, M., Mikhalev, A., Stamm, B., & Lipparini, F. (2022). Coarse-Graining ddCOSMO through an Interface between Tinker and the ddX Library. The Journal of Physical Chemistry B, 126(43), Article 43. https://doi.org/10.1021/acs.jpcb.2c04579
    67. Rettberg, J., Wittwar, D., Buchfink, P., Brauchler, A., Ziegler, P., Fehr, J., & Haasdonk, B. (2022). Port-Hamiltonian Fluid-Structure Interaction Modeling and Structure-Preserving Model Order Reduction of a Classical Guitar. https://doi.org/10.48550/arXiv.2203.10061
    68. Rösinger, C. A., & Scherer, C. W. (2022). Gain-Scheduling Controller Synthesis for Networked Systems with Full Block Scalings.
    69. Santin, G., Karvonen, T., & Haasdonk, B. (2022). Sampling based approximation of linear functionals in reproducing kernel Hilbert spaces. BIT Numerical Mathematics, 62(1), Article 1. https://doi.org/10.1007/s10543-021-00870-3
    70. Scherer, C. (2022). Dissipativity and Integral Quadratic Constraints, Tailored computational robustness tests for complex interconnections. IEEE Control Systems Magazine, 42(3), Article 3. https://arxiv.org/abs/2105.07401
    71. Scherer, C. W. (2022). Dissipativity, Convexity and Tight O\textquotesingleShea-Zames-Falb Multipliers for Safety Guarantees. IFAC-PapersOnLine, 55(30), Article 30. https://doi.org/10.1016/j.ifacol.2022.11.044
    72. Schneider, G., & Winter, M. (2022). The amplitude system for a simultaneous short-wave Turing  and long-wave Hopf instability. Discrete Contin. Dyn. Syst. Ser. S, 15(9), Article 9. https://doi.org/10.3934/dcdss.2021119
    73. Schneider, G., & Winter, M. (2022). The amplitude system for a imultaneous short-wave Turing and long-wave Hopf instability. Discrete Contin. Dyn. Syst. Ser. S, 15(9), Article 9. https://doi.org/10.3934/dcdss.2021119
    74. Shuva, S., Buchfink, P., Röhrle, O., & Haasdonk, B. (2022). Reduced Basis Methods for Efficient Simulation of a Rigid Robot Hand Interacting with Soft Tissue. In I. Lirkov & S. Margenov (Hrsg.), Large-Scale Scientific Computing (S. 402--409). Springer International Publishing.
    75. Stamm, B., & Theisen, L. (2022). A Quasi-Optimal Factorization Preconditioner for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains. SIAM Journal on Numerical Analysis, 60(5), Article 5. https://doi.org/10.1137/21m1456005
    76. von Wolff, L., & Pop, I. S. (2022). Upscaling of a Cahn–Hilliard Navier–Stokes model with precipitation and dissolution in a thin strip. Journal of Fluid Mechanics, 941, A49--. https://doi.org/DOI: 10.1017/jfm.2022.308
    77. Wenzel, T., Kurz, M., Beck, A., Santin, G., & Haasdonk, B. (2022). Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows. In I. Lirkov & S. Margenov (Hrsg.), Large-Scale Scientific Computing (S. 410--418). Springer International Publishing.
    78. Wenzel, T., Santin, G., & Haasdonk, B. (2022). Stability of convergence rates: Kernel interpolation on non-Lipschitz domains. arXiv. https://doi.org/10.48550/ARXIV.2203.12532
    79. Wenzel, T., Santin, G., & Haasdonk, B. (2022). Analysis of Target Data-Dependent Greedy Kernel Algorithms: Convergence Rates for f-, \$\$f \backslashcdot P\$\$- and f/P-Greedy. Constructive Approximation. https://doi.org/10.1007/s00365-022-09592-3
    80. Wirth, J., & Sebih, M. E. (2022). On a wave equation with singular dissipation. Mathematische Nachrichten, 295(8), Article 8. https://doi.org/10.1002/mana.202000076
    81. Zaverkin, V., Holzmüller, D., Schuldt, R., & Kästner, J. (2022). Predicting properties of periodic systems from cluster data: A case study of liquid water. The Journal of Chemical Physics, 156(11), Article 11. https://doi.org/10.1063/5.0078983
    82. Zaverkin, V., Holzmüller, D., Steinwart, I., & Kästner, J. (2022). Exploring chemical and conformational spaces by batch mode deep active learning. Digital Discovery, 1, 605–620. https://doi.org/10.1039/D₂DD00034B
    83. Zinßer, M., Braun, B., Helder, T., Magorian Friedlmeier, T., Pieters, B., Heinlein, A., Denk, M., Göddeke, D., & Powalla, M. (2022). Irradiation-dependent topology optimization of metallization grid patterns and variation of contact layer thickness used for latitude-based yield gain of thin-film solar modules. MRS Advances. https://doi.org/10.1557/s43580-022-00321-3
  5. 2021

    1. Wittwar, D., & Haasdonk, B. (o. J.). Convergence rates for matrix P-greedy variants. In Numerical mathematics and advanced applications---ENUMATH              2019 (Bd. 139, S. 1195--1203). Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1\_119
    2. Alonso-Orán, D., Rohde, C., & Tang, H. (2021). A local-in-time theory for singular SDEs with applications to fluid models with transport noise. J. Nonlinear Sci., 31(6), Article 6. https://doi.org/doi.org/10.1007/s00332-021-09755-9
    3. Altenbernd, M., Dreier, N.-A., Engwer, C., & Göddeke, D. (2021). Towards Local-Failure Local-Recovery in PDE Frameworks: The Case of Linear Solvers. In T. Kozubek, P. Arbenz, J. Jaros, L. Ríha, J. Sístek, & P. Tichý (Hrsg.), High Performance Computing in Science and Engineering -- HPCSE 2019 (Bd. 12456, S. 17--38). Springer. https://doi.org/10.1007/978-3-030-67077-1_2
    4. Altmann, K., & Witt, F. (2021). Toric co-Higgs sheaves. Journal of Pure and Applied Algebra, 225(8), Article 8. https://doi.org/10.1016/j.jpaa.2020.106634
    5. Barth, A., & Merkle, R. (2021). Multilevel Monte Carlo estimators for elliptic PDEs with Lévy-type diffusion coefficient. ArXiv e-prints, arXiv:2108.05604 math.NA.
    6. Beck, A., Dürrwächter, J., Kuhn, T., Meyer, F., Munz, C.-D., & Rohde, C. (2021). Uncertainty Quantification in High Performance Computational Fluid Dynamics. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Hrsg.), High Performance Computing in Science and Engineering ’19 (S. 355--371). Springer International Publishing.
    7. Benacchio, T., Bonaventura, L., Altenbernd, M., Cantwell, C. D., Düben, P. D., Gillard, M., Giraud, L., Göddeke, D., Raffin, E., Teranishi, K., & Wedi, N. (2021). Resilience and fault tolerance in high-performance computing for numerical weather and climate prediction. The International Journal of High Performance Computing Applications, 35(4), Article 4. https://doi.org/10.1177/1094342021990433
    8. Benguria, R. D., Cianchi, A., Maz’ya, V. G., Davies, E. B., Takhtajan, L. A., Tretter, C., Yafaev, D., & und weitere. (2021). Partial differential equations, spectral theory, and mathematical physics—the Ari Laptev anniversary volume. In P. Exner, R. L. Frank, F. Gesztesy, H. Holden, & T. Weidl (Hrsg.), EMS Series of Congress Reports. EMS Press, Berlin. https://doi.org/10.4171/ECR/18
    9. Berrett, T. B., Gyorfi, L., & Walk, H. (2021). Strongly universally consistent nonparametric regression and    classification with privatised data. ELECTRONIC JOURNAL OF STATISTICS, 15(1), Article 1. https://doi.org/10.1214/21-EJS1845
    10. Brencher, L., & Barth, A. (2021). Stochastic conservation laws with discontinuous flux functions: The multidimensional case.
    11. Brencher, L., & Barth, A. (2021). Scalar conservation laws with stochastic discontinuous flux function. ArXiv e-prints, arXiv:2107.00549 math.NA.
    12. Buchfink, P., Glas, S., & Haasdonk, B. (2021). Symplectic Model Reduction of Hamiltonian Systems on Nonlinear Manifolds. https://doi.org/10.48550/arXiv.2112.10815
    13. Buchfink, P., & Haasdonk, B. (2021). Experimental Comparison of Symplectic and Non-symplectic Model Order Reduction an Uncertainty Quantification Problem. In F. J. Vermolen & C. Vuik (Hrsg.), Numerical Mathematics and Advanced Applications ENUMATH 2019 (Bd. 139). Springer International Publishing. https://doi.org/10.1007/978-3-030-55874-1
    14. Cleyton, R., Moroianu, A., & Semmelmann, U. (2021). Metric connections with parallel skew-symmetric torsion. Adv. Math., 378, 107519, 50. https://doi.org/10.1016/j.aim.2020.107519
    15. de Rijk, B., & Sandstede, B. (2021). Diffusive stability against nonlocalized perturbations of              planar wave trains in reaction-diffusion systems. J. Differential Equations, 274, 1223--1261. https://doi.org/10.1016/j.jde.2020.10.027
    16. de Rijk, B., & Schneider, G. (2021). Global existence and decay in multi-component reaction-diffusion-advection systems with different velocities: oscillations in time and frequency. NoDEA, Nonlinear Differ. Equ. Appl., 28(1), Article 1.
    17. Düll, W.-P. (2021). Validity of the nonlinear Schrödinger approximation for the two-dimensional water wave problem with and without surface tension in the arc length formulation. Arch. Ration. Mech. Anal., 239(2), Article 2. https://doi.org/10.1007/s00205-020-01586-4
    18. Dürrwächter, J., Meyer, F., Kuhn, T., Beck, A., Munz, C.-D., & Rohde, C. (2021). A high-order stochastic Galerkin code for the compressible Euler and Navier-Stokes equations. Computers & Fluids, 228, 1850044, 20. https://doi.org/10.1016/j.compfluid.2021.105039
    19. Echterdiek, F., Kitterer, D., Dippon, J., Paul, G., Schwenger, V., & Latus, J. (2021). Impact of cardiopulmonary resuscitation on outcome of kidney transplantations from braindead donors aged ≥65 years. Clin Transplant., 2021 Aug 13:, e14452. https://doi.org/10.1111/ctr.14452
    20. Eggenweiler, E., & Rybak, I. (2021). Effective coupling conditions for arbitrary flows in Stokes-Darcy systems. Multiscale Model. Simul., 19, 731–757. https://doi.org/10.1137/20M1346638
    21. Ehring, T., & Haasdonk, B. (2021). Greedy sampling and approximation for realizing feedback control for high dimensional nonlinear systems.
    22. Ehring, T., & Haasdonk, B. (2021). Feedback control for a coupled soft tissue system by kernel surrogates. Coupled Problems 2021, IS11, Article IS11. https://doi.org/10.23967/coupled.2021.026
    23. Fiedler, C., Scherer, C. W., & Trimpe, S. (2021). Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8), Article 8. https://ojs.aaai.org/index.php/AAAI/article/view/16912
    24. Fiedler, C., Scherer, C. W., & Trimpe, S. (2021). Learning-enhanced robust controller synthesis with rigorous statistical and control-theoretic guarantees. 60th IEEE Conf. Decision and Control, 5122–5129. https://arxiv.org/abs/2105.03397
    25. Freiberg, U., & Kohl, S. (2021). Box dimension of fractal attractors and their numerical computation. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 95. https://doi.org/10.1016/j.cnsns.2020.105615
    26. Gander, M., Lunowa, S., & Rohde, C. (2021). Consistent and asymptotic-preserving finite-volume domain decomposition methods for singularly perturbed elliptic equations. Domain Decomposition Methods in Science and Engineering XXVI. http://www.uhasselt.be/Documents/CMAT/Preprints/2021/UP2103.pdf
    27. Geck, M. (2021). Generalised Gelfand-Graev representations in bad characteristic? Transformation Groups, 26(1), Article 1. https://doi.org/10.1007/s00031-020-09575-3
    28. Giesselmann, J., Meyer, F., & Rohde, C. (2021). Error control for statistical solutions of hyperbolic systems of conservation laws. Calcolo, 58(2), Article 2. https://doi.org/10.1007/s10092-021-00417-6
    29. Girardi, G., & Wirth, J. (2021). Decay Estimates for a Klein-Gordon Model with Time-Periodic Coeffizients. In M. Cicognani, D. del Santo, A. Parmeggiani, & M. Reissig (Hrsg.), Anomalies in Partial Differential Equations (Bd. 43). Springer. https://doi.org/10.1007/978-3-030-61346-4_14
    30. Haasdonk, B., Hamzi, B., Santin, G., & Wittwar, D. (2021). Kernel methods for center manifold approximation and a weak              data-based version of the center manifold theorem. Phys. D, 427, Paper No. 133007, 14. https://doi.org/10.1016/j.physd.2021.133007
    31. Haasdonk, B. (2021). Model Order Reduction, Applications, MOR Software (D. Gruyter, Hrsg.; Bd. 3). De Gruyter. https://doi.org/10.1515/9783110499001
    32. Haasdonk, B., Ohlberger, M., & Schindler, F. (2021). An adaptive model hierarchy for data-augmented training of kernel models for reactive flow. arXiv. https://doi.org/10.48550/ARXIV.2110.12388
    33. Haasdonk, B., Wenzel, T., Santin, G., & Schmitt, S. (2021). Biomechanical Surrogate Modelling Using Stabilized Vectorial Greedy Kernel Methods.
    34. Hahn, B. N. (2021). Motion compensation strategies in tomography. https://doi.org/10.1007/978-3-030-57784-1_3
    35. Hahn, B. N., Kienle-Garrido, M. L., & Quinto, E. T. (2021). Microlocal properties of dynamic Fourier integral operators. https://doi.org/10.1007/978-3-030-57784-1_4
    36. Hamm, T., & Steinwart, I. (2021). Adaptive Learning Rates for Support Vector Machines Working on Data with Low Intrinsic Dimension. Ann. Statist.
    37. Hamm, T., & Steinwart, I. (2021). Intrinsic Dimension Adaptive Partitioning for Kernel Methods. Fakultät für Mathematik und Physik, Universität Stuttgart.
    38. Hang, H., & Steinwart, I. (2021). Optimal Learning with Anisotropic Gaussian SVMs. Appl. Comput. Harmon. Anal., 55, Article 55. https://doi.org/10.1016/j.acha.2021.06.004
    39. Hilder, B. (2021). Nonlinear stability of fast invading fronts in a Ginzburg–Landau equation with an additional conservation law. Nonlinearity, 34(8), Article 8. https://doi.org/10.1088/1361-6544/abd612
    40. Holicki, T., & Scherer, C. W. (2021). Robust Gain-Scheduled Estimation with Dynamic D-Scalings. IEEE Trans. Autom. Control. https://doi.org/10.1109/TAC.2021.3052751
    41. Holicki, T., & Scherer, C. W. (2021). Algorithm Design and Extremum Control: Convex Synthesis due to Plant Multiplier Commutation. Proc. 60th IEEE Conf. Decision and Control, 3249–3256. https://doi.org/10.1109/CDC45484.2021.9683012
    42. Holicki, T., Scherer, C. W., & Trimpe, S. (2021). Controller Design via Experimental Exploration with Robustness Guarantees. IEEE Control Syst. Lett., 5(2), Article 2. https://doi.org/10.1109/LCSYS.2020.3004506
    43. Holicki, T., & Scherer, C. W. (2021). Revisiting and Generalizing the Dual Iteration for Static and Robust Output-Feedback Synthesis. Int. J. Robust Nonlin., 1–33. https://doi.org/10.1002/rnc.5547
    44. Holzmüller, D., & Pflüger, D. (2021). Fast Sparse Grid Operations Using the Unidirectional Principle: A Generalized and Unified Framework. In H.-J. Bungartz, J. Garcke, & D. Pflüger (Hrsg.), Sparse Grids and Applications - Munich 2018 (S. 69--100). Springer International Publishing.
    45. Hsiao, G. C., & Wendland, W. L. (2021). On the propagation of acoustic waves in a thermo-electro-magneto-elastic solid. Applicable Analysis, 101 (2022)(0), Article 0. https://doi.org/10.1080/00036811.2021.1986027
    46. Hsiao, G. C., & Wendland, W. L. (2021). Boundary integral equations. In Applied Mathematical Sciences (Bd. 164, S. xx+783). Springer, Cham. https://doi.org/10.1007/978-3-030-71127-6
    47. Aufgaben und Lösungen zur Höheren Mathematik 1. (2021). In K. V. Höllig & J. V. Hörner (Hrsg.), Springer eBook Collection (3rd ed. 2021.). https://doi.org/10.1007/978-3-662-63181-2
    48. Jentsch, T., & Weingart, G. (2021). Jacobi relations on naturally reductive spaces. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 59(1), Article 1. https://doi.org/10.1007/s10455-020-09740-7
    49. Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2021). Layer potential theory for the anisotropic Stokes system with variable L∞ symmetrically elliptic tensor coefficient. Math. Methods Appl. Sci., 44(12), Article 12. https://doi.org/10.1002/mma.7167
    50. Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2021). Dirichlet and transmission problems for anisotropic Stokes and Navier-Stokes systems with L∞ tensor coefficient under relaxed ellipticity condition. Discrete Contin. Dyn. Syst., 41(9), Article 9. https://doi.org/10.3934/dcds.2021042
    51. Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2021). Layer potential theory for the anisotropic Stokes system with variable L∞ symmetrically elliptic tensor coeffici. Math. Methods Appl. Sci., 44(12), Article 12. https://doi.org/10.1002/mma.7167
    52. Kollross, A. (2021). Polar actions on Damek-Ricci spaces. Differential Geometry and its Applications, 76, 101753. https://doi.org/10.1016/j.difgeo.2021.101753
    53. Krämer, A., Maier, B., Rau, T., Huber, F., Klotz, T., Ertl, T., Göddeke, D., Mehl, M., Reina, G., & Röhrle, O. (2021). Multi-physics multi-scale HPC simulations of skeletal muscles. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Hrsg.), High Performance Computing in Science and Engineering ’20: Transactions of the High Performance Computing Center, Stuttgart(HLRS) 2020. https://doi.org/10.1007/978-3-030-80602-6_13
    54. Kühnert, J., Göddeke, D., & Herschel, M. (2021, Juli). Provenance-integrated parameter selection and optimization in numerical simulations. 13th International Workshop on Theory and Practice ofProvenance (TaPP 2021). https://www.usenix.org/conference/tapp2021/presentation/kühnert
    55. Lang, R. (2021). On the eigenvalues of the non-self-adjoint Robin Laplacian on bounded domains and compact quantum graphs. [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-11428
    56. Leiteritz, R., Buchfink, P., Haasdonk, B., & Pflüger, D. (2021). Surrogate-data-enriched Physics-Aware Neural Networks.
    57. Magiera, J. (2021). A Molecular--Continuum Multiscale Solver for Liquid--Vapor Flow. Small Collaboration: Advanced Numerical Methods for Nonlinear Hyperbolic Balance Laws and Their Applications (hybrid meeting), 41. https://doi.org/10.14760/OWR-2021-41
    58. Magiera, J. (2021). A Molecular--Continuum Multiscale Solver for Liquid--Vapor Flow: Modeling and Numerical Simulation [Ph.D. Thesis]. https://doi.org/10.18419/opus-11797
    59. Makogin, V., Oesting, M., Rapp, A., & Spodarev, E. (2021). Long range dependence for stable random processes. J. Time Series Anal., 42(2), Article 2. https://doi.org/10.1111/jtsa.12560
    60. Mehl, L., Beschle, C., Barth, A., & Bruhn, A. (2021). An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation. Proceedings of the International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), 140--152. https://doi.org/10.1007/978-3-030-75549-2_12
    61. Mel’nyk, T. (2021). Asymptotic approximations for eigenvalues and eigenfunctions of a spectral problem in a thin graph-like junction with a concentrated mass in the node. Analysis and Applications, 19(05), Article 05. https://doi.org/10.1142/S0219530520500219
    62. Michalowsky, S., Scherer, C., & Ebenbauer, C. (2021). Robust and structure exploiting optimisation algorithms: An integral quadratic constraint approach. International Journal of Control, 94(11), Article 11. https://doi.org/10.1080/00207179.2020.1745286
    63. Nonnenmacher, M., Reeb, D., & Steinwart, I. (2021). Which Minimizer Does My Neural Network Converge To? In N. Oliver, F. Pérez-Cruz, S. Kramer, J. Read, & J. A. Lozano (Hrsg.), Joint European Conference on Machine Learning and Knowledge Discovery in Databases (S. 87--102). Springer International Publishing. https://doi.org/10.1007/978-3-030-86523-8_6
    64. Osorno, M., Schirwon, M., Kijanski, N., Sivanesapillai, R., Steeb, H., & Göddeke, D. (2021). A cross-platform, high-performance SPH toolkit for image-based flow simulations on the pore scale of porous media. Computer Physics Communications, 267(108059), Article 108059. https://doi.org/10.1016/j.cpc.2021.108059
    65. Rohde, C., & Tang, H. (2021). On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena. NoDEA Nonlinear Differential Equations Appl., 28(1), Article 1. https://doi.org/10.1007/s00030-020-00661-9
    66. Rohde, C., & Tang, H. (2021). On a stochastic Camassa-Holm type equation with higher order nonlinearities. J. Dynam. Differential Equations, 33, 1823–1852. https://doi.org/10.1007/s10884-020-09872-1
    67. Rohde, C., & Von Wolff, L. (2021). A ternary Cahn–Hilliard–Navier–Stokes model for two-phase flow with precipitation and dissolution. Mathematical Models and Methods in Applied Sciences, 31(01), Article 01. https://doi.org/10.1142/S0218202521500019
    68. Rybak, I., Schwarzmeier, C., Eggenweiler, E., & Rüde, U. (2021). Validation and calibration of coupled porous-medium and free-flow problems using pore-scale resolved models. Comput. Geosci., 25, 621–635. https://doi.org/10.1007/s10596-020-09994-x
    69. Rörich, A., Werthmann, T. A., Göddeke, D., & Grasedyck, L. (2021). Bayesian inversion for electromyography using low-rank tensor formats. Inverse Problems, 37(5), Article 5. https://doi.org/10.1088/1361-6420/abd85a
    70. Santin, G., & Haasdonk, B. (2021). Kernel methods for surrogate modeling. In P. Benner, W. Schilders, S. Grivet-Talocia, A. Quarteroni, G. Rozza, & L. M. Silveira (Hrsg.), Model Order Reduction: Bd. 1: System-and Data-Driven Methods and Algorithms (S. 311–354). de Gruyter.
    71. Scherer, C., & Ebenbauer, C. (2021). Convex Synthesis of Accelerated Gradient Algorithms. SIAM J. Contr. Optim. (to appear). https://arxiv.org/abs/2102.06520
    72. Schmalfuss, J., Riethmüller, C., Altenbernd, M., Weishaupt, K., & Göddeke, D. (2021). Partitioned coupling vs. monolithic block-preconditioning approaches for solving Stokes-Darcy systems. Proceedings of the International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS). https://doi.org/10.23967/coupled.2021.043
    73. Schricker, S., Monje, DC., Dippon, J., Kimmel, M., Alscher, MD., & Schanz, M. (2021). Physician-guided, hybrid genetic testing exerts promising effects on health-related behavior without compromising quality of life. Sci Rep., 2021 Apr 19;11(1), 8494. https://doi.org/10.1038/s41598-021-87821-8
    74. Stauch, G., Fritz, P., Rokai, R., Sediqi, A., Firooz, H., Voelker, HU., Weinhara, M., Mollin, J., Soudah, B., Dalquen, P., Brinckmann, F., & Dippon, J. (2021). The Importance of Clinical Data for the Diagnosis of Breast Tumours in North Afghanistan. Int. Jounal Breast Cancer, Jul 30;2021, 6625239. https://doi.org/10.1155/2021/6625239
    75. Steinwart, I., & Fischer, S. (2021). A Closer Look at Covering Number Bounds for Gaussian Kernels. J. Complexity, 62, 101513. https://doi.org/10.1016/j.jco.2020.101513
    76. Steinwart, I., & Ziegel, J. F. (2021). Strictly proper kernel scores and characteristic kernels on compact spaces. Appl. Comput. Harmon. Anal., 51, 510--542. https://doi.org/10.1016/j.acha.2019.11.005
    77. Veenman, J., Scherer, C. W., Ardura, C., Bennani, S., Preda, V., & Girouart, B. (2021). IQClab: A new IQC based toolbox for robustness analysis and control design. IFAC-PapersOnline, 54(8), Article 8. https://doi.org/10.1016/j.ifacol.2021.08.583
    78. von Wolff, L. (2021). The Dune-Phasefield Module release 1.0. DaRUS. https://doi.org/10.18419/darus-1634
    79. von Wolff, L., Weinhardt, F., Class, H., Hommel, J., & Rohde, C. (2021). Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling. Transp. Porous Media, 137(2), Article 2. https://doi.org/10.1007/s11242-021-01560-y
    80. Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability estimation of regular porous structures: a benchmark for comparison of methods. Transp. Porous Med., 138, 1–23. https://doi.org/10.1007/s11242-021-01586-2
    81. Wenzel, T., Santin, G., & Haasdonk, B. (2021). A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability and uniform point distribution.
    82. Wenzel, T., Santin, G., & Haasdonk, B. (2021). Universality and Optimality of Structured Deep Kernel Networks. arXiv. https://doi.org/10.48550/ARXIV.2105.07228
    83. Wenzel, T., Santin, G., & Haasdonk, B. (2021). Analysis of target data-dependent greedy kernel algorithms: Convergence rates for $f$-, $f P$- and $f/P$-greedy. arXiv. https://doi.org/10.48550/ARXIV.2105.07411
    84. Wenzel, T., Santin, G., & Haasdonk, B. (2021). Analysis of target data-dependent greedy kernel algorithms: Convergence rates for f-, f P- and f/P-greedy. arXiv. https://doi.org/10.48550/ARXIV.2105.07411
    85. Zaverkin, V., Kästner, J., Holzmüller, D., & Steinwart, I. (2021). Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments. J. Chem. Theory Comput. https://doi.org/10.1021/acs.jctc.1c00527
  6. 2020

    1. Alla, A., Haasdonk, B., & Schmidt, A. (2020). Feedback control of parametrized PDEs via model order              reduction and dynamic programming principle. Adv. Comput. Math., 46(1), Article 1. https://doi.org/10.1007/s10444-020-09744-8
    2. Armiti-Juber, A., & Rohde, C. (2020). On the well-posedness of a nonlinear fourth-order extension of Richards’ equation. J. Math. Anal. Appl., 487(2), Article 2. https://doi.org/10.1016/j.jmaa.2020.124005
    3. Barberis, M. L., Moroianu, A., & Semmelmann, U. (2020). Generalized vector cross products and Killing forms on negatively curved manifolds. Geom. Dedicata, 205, 113--127. https://doi.org/10.1007/s10711-019-00467-9
    4. Barreau, M., Scherer, C. W., Gouaisbaut, F., & Seuret, A. (2020). Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis. IFAC World Congress.
    5. Barth, A., & Merkle, R. (2020). Subordinated Gaussian Random Fields in Elliptic Partial Differential Equations. ArXiv e-prints, arXiv:2011.09311 math.NA.
    6. Barth, A., & Merkle, R. (2020). Subordinated Gaussian Random Fields. ArXiv e-prints, arXiv:2012.06353 math.PR.
    7. Bastian, P., Altenbernd, M., Dreier, N.-A., Engwer, C., Fahlke, J., Fritze, R., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., Shegunov, N., & Turek, S. (2020). Exa-Dune - Flexible PDE Solvers, Numerical Methods and Applications. In H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, & W. E. Nagel (Hrsg.), Software for Exascale Computing -- SPPEXA 2016--2019 (S. 225--269). Springer. https://doi.org/10.1007/978-3-030-47956-5_9
    8. Baumstark, S., Schneider, G., & Schratz, K. (2020). Effective numerical simulation of the Klein-Gordon-Zakharov system in the Zakharov limit. In Mathematics of wave phenomena. Selected papers based on the presentations at the conference, Karlsruhe, Germany, July 23--27, 2018 (S. 37--48). Cham: Birkhäuser.
    9. Baumstark, S., Schneider, G., Schratz, K., & Zimmermann, D. (2020). Effective slow dynamics models for a class of dispersive systems. J. Dyn. Differ. Equations, 32(4), Article 4.
    10. Beck, A., Dürrwächter, J., Kuhn, T., Meyer, F., Munz, C.-D., & Rohde, C. (2020). $hp$-Multilevel Monte Carlo methods for uncertainty quantification of compressible flows. SIAM J. Sci. Comput., 42(4), Article 4. https://doi.org/10.1137/18M1210575
    11. Berberich, J., Koch, A., Scherer, C. W., & Allgöwer, F. (2020). Robust data-driven state-feedback design. 2020 American Control Conference (ACC), 1532–1538. https://doi.org/10.23919/acc45564.2020.9147320
    12. Berre, I., Boon, W. M., Flemisch, B., Fumagalli, A., Gläser, D., Keilegavlen, E., Scotti, A., Stefansson, I., Tatomir, A., Brenner, K., Burbulla, S., Devloo, P., Duran, O., Favino, M., Hennicker, J., Lee, I.-H., Lipnikov, K., Masson, R., Mosthaf, K., … Zulian, P. (2020). Verification benchmarks for single-phase flow in three-dimensional fractured porous media.
    13. Bitter, A. (2020). Virtual levels of multi-particle quantum systems and their implications for the Efimov effect [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-11315
    14. Blanke, S. E., Hahn, B. N., & Wald, A. (2020). Inverse problems with inexact forward operator: iterative regularization and application in dynamic imaging. Inverse Problems, 36(12), Article 12. https://doi.org/10.1088/1361-6420/abb5e1
    15. Brehler, M., Schirwon, M., Krummrich, P. M., & Göddeke, D. (2020). Simulation of Nonlinear Signal Propagation in Multimode Fibers on Multi-GPU Systems. Communications in Nonlinear Science and Numerical Simulation, 84, 105150. https://doi.org/10.1016/j.cnsns.2019.105150
    16. Brencher, L., & Barth, A. (2020). Hyperbolic Conservation Laws with Stochastic Discontinuous Flux Functions. International Conference on Finite Volumes for Complex Applications, 265--273.
    17. Bringedal, C., Von Wolff, L., & Pop, I. S. (2020). Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments. Multiscale Modeling &amp$\mathsemicolon$ Simulation, 18(2), Article 2. https://doi.org/10.1137/19m1239003
    18. Brinker, J., & Wirth, J. (2020). Gelfand Triples for the Kohn–Nirenberg Quantization on Homogeneous Lie Groups. In Advances in Harmonic Analysis and Partial Differential Equations. (S. 51–97). Birkhäuser. https://doi.org/10.1007/978-3-030-58215-9_3
    19. Buchfink, P., Haasdonk, B., & Rave, S. (2020). PSD-Greedy Basis Generation for Structure-Preserving Model Order Reduction of Hamiltonian Systems. In P. Frolkovič, K. Mikula, & D. Ševčovič (Hrsg.), Proceedings of the Conference Algoritmy 2020 (S. 151--160). Vydavateľstvo SPEKTRUM. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/1577/829
    20. Burbulla, S., & Rohde, C. (2020). A fully conforming finite volume approach to two-phase flow in fractured porous media. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Hrsg.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (S. 547–555). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_51
    21. de Rijk, B., & Schneider, G. (2020). Global Existence and Decay in Nonlinearly Coupled Reaction-Diffusion-Advection Equations with Different Velocities. J. Differential Equations, 268(7), Article 7. https://doi.org/10.1016/j.jde.2019.09.056
    22. Díaz-Ramos, J. C., Domínguez-Vázquez, M., & Kollross, A. (2020). On homogeneous manifolds whose isotropy actions are polar. manuscripta mathematica, 161(1), Article 1. https://doi.org/10.1007/s00229-018-1077-1
    23. Eggenweiler, E., & Rybak, I. (2020). Unsuitability of the Beavers-Joseph interface condition for filtration problems. J. Fluid Mech., 892, A10. http://dx.doi.org/10.1017/jfm.2020.194
    24. Eggenweiler, E., & Rybak, I. (2020). Interface conditions for arbitrary flows in coupled porous-medium and free-flow systems. In R. Klöfkorn, E. Keilegavlen, F. Radu, & J. Fuhrmann (Hrsg.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (Bd. 323, S. 345--353). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_31
    25. Escher, J., Knopf, P., Lienstromberg, C., & Matioc, B.-V. (2020). Stratified periodic water waves with singular density              gradients. Ann. Mat. Pura Appl. (4), 199(5), Article 5. https://doi.org/10.1007/s10231-020-00950-1
    26. IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart,  Germany, May 22-25, 2018: MORCOS 2018. (2020). In J. Fehr & B. Haasdonk (Hrsg.), IUTAM Bookseries. Springer.
    27. Fischer, S., & Steinwart, I. (2020). Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm. J. Mach. Learn. Res., 205, Article 205.
    28. Fischer, S., & Steinwart, I. (2020). Sobolev norm learning rates for regularized least-squares algorithms. J. Mach. Learn. Res., 21(205), Article 205. http://jmlr.org/papers/v21/19-734.html
    29. Geck, M. (2020). Green functions and Glauberman degree-divisibility. Annals of Mathematics, 192(1), Article 1. https://doi.org/10.4007/annals.2020.192.1.4
    30. Geck, M. (2020). Computing Green functions in small characteristic. Journal of Algebra, 561, 163--199. https://doi.org/10.1016/j.jalgebra.2019.12.016
    31. Geck, M. (2020). ChevLie: Constructing Lie algebras and Chevalley groups. Journal of Software for Algebra and Geometry, 10(1), Article 1. https://doi.org/10.2140/jsag.2020.10.41
    32. Geck, M. (2020). On Jacob’s construction of the rational canonical form of a matrix. The Electronic Journal of Linear Algebra, 36(36), Article 36. https://doi.org/10.13001/ela.2020.5055
    33. Geck, M., & Malle, G. (2020). The character theory of finite groups of Lie type. A guided tour. In Cambridge Studies in Advanced Mathematics (Bd. 187, S. ix+394). Cambridge University Press. https://doi.org/10.1017/9781108779081
    34. Advances in Harmonic Analysis and Partial Differential Equations. (2020). In V. Georgiev, T. Ozawa, M. Ruzhansky, & J. Wirth (Hrsg.), Trends in Mathematics. Birkhäuser. https://doi.org/10.1007/978-3-030-58215-9
    35. Gerstenberger, J. T., Burbulla, S., & Kröner, D. (2020). Discontinuous Galerkin method for incompressible two-phase flows. Submitted to: Springer Proceedings in Mathematics & Statistics.
    36. Giesselmann, J., Meyer, F., & Rohde, C. (2020). An a posteriori error analysis based on non-intrusive spectral projections for systems of random conservation laws. In A. Bressan, M. Lewicka, D. Wang, & Y. Zheng (Hrsg.), Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018 (Bd. 10, S. 449–456). AIMS Series on Applied Mathematics. https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf
    37. Giesselmann, J., Meyer, F., & Rohde, C. (2020). A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws. BIT Numer. Math. https://doi.org/10.1007/s10543-019-00794-z
    38. Giesselmann, J., Meyer, F., & Rohde, C. (2020). A posteriori error analysis for random scalar conservation laws using the Stochastic Galerkin method. IMA J. Numer. Anal., 40(2), Article 2. https://doi.org/10.1093/imanum/drz004
    39. Ginoux, N., Habib, G., Pilca, M., & Semmelmann, U. (2020). An Obata-type characterisation of Calabi metrics on line bundles. North-West. Eur. J. Math., 6, 119--136, i.
    40. Giraud, L., Rüde, U., & Stals, L. (2020). Resiliency in Numerical Algorithm Design for Extreme Scale Simulations (Dagstuhl Seminar 20101). Dagstuhl Reports, 10(3), Article 3. https://doi.org/10.4230/DagRep.10.3.1
    41. Griesemer, M., Hofacker, M., & Linden, U. (2020). From short-range to contact interactions in the 1d Bose gas. Math. Phys. Anal. Geom., 23(2), Article 2. https://doi.org/10.1007/s11040-020-09344-4
    42. Grunert, D., Fehr, J., & Haasdonk, B. (2020). Well-scaled, a-posteriori error estimation for model order reduction of large second-order mechanical systems. ZAMM, 100(8), Article 8. https://doi.org/10.1002/zamm.201900186
    43. Göddeke, D., Schirwon, M., & Borg, N. (2020). Smartphone-Apps im Mathematikstudium. https://doi.org/10.18419/darus-1147
    44. Haas, T., de Rijk, B., & Schneider, G. (2020). MODULATION EQUATIONS NEAR THE ECKHAUS BOUNDARY: THE KdV EQUATION. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 52(6), Article 6. https://doi.org/10.1137/19M1266873
    45. Haas, T., & Schneider, G. (2020). Failure of the N-wave interaction approximation without imposing    periodic boundary conditions. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 100(6), Article 6. https://doi.org/10.1002/zamm.201900230
    46. Haasdonk, B., Hamzi, B., Santin, G., & Wittwar, D. (2020). Greedy kernel methods for center manifold approximation. In Spectral and high order methods for partial differential              equations---ICOSAHOM 2018 (Bd. 134, S. 95--106). Springer, Cham. https://doi.org/10.1007/978-3-030-39647-3\_6
    47. Hilder, B. (2020). Modulating traveling fronts for the Swift-Hohenberg equation in the case of an additional conservation law. Journal of Differential Equations, 269(5), Article 5. https://doi.org/10.1016/j.jde.2020.03.033
    48. Hitz, T., Keim, J., Munz, C.-D., & Rohde, C. (2020). A parabolic relaxation model for the Navier-Stokes-Korteweg equations. J. Comput. Phys., 421, 109714. https://doi.org/10.1016/j.jcp.2020.109714
    49. Holicki, T., & Scherer, C. W. (2020). Output-Feedback Synthesis for a Class of Aperiodic Impulsive Systems. IFAC-PapersOnline, 53(2), Article 2. https://doi.org/10.1016/j.ifacol.2020.12.981
    50. Holzmüller, D., & Steinwart, I. (2020). Training Two-Layer ReLU Networks with Gradient Descent is Inconsistent. Fakultät für Mathematik und Physik, Universität Stuttgart.
    51. Holzmüller, D., & Steinwart, I. (2020). Training two-layer ReLU networks with gradient descent is inconsistent. arXiv:2002.04861. https://arxiv.org/abs/2002.04861
    52. Häufle, D. F. B., Wochner, I., Holzmüller, D., Driess, D., Günther, M., & Schmitt, S. (2020). Muscles Reduce Neuronal Information Load : Quantification of Control Effort in Biological vs. Robotic Pointing and Walking. Frontiers In Robotics and AI, 7, 77. https://doi.org/10.3389/frobt.2020.00077
    53. Jentsch, T., & Weingart, G. (2020). RIEMANNIAN AND KAHLERIAN NORMAL COORDINATES. ASIAN JOURNAL OF MATHEMATICS, 24(3), Article 3.
    54. Kennedy, J. B., & Lang, R. (2020). On the eigenvalues of quantum graph Laplacians with large complex δ couplings. Portugaliae Mathematica. A Journal of the Portuguese Mathematical Society, 77(2), Article 2.
    55. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (2020). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.02.012
    56. Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2020). Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier–Stokes systems with L∞ strongly elliptic coefficient tensor. Complex Variables and Elliptic Equations, 65(1), Article 1. https://doi.org/10.1080/17476933.2019.1631293
    57. Kollross, A. (2020). Octonions, triality, the exceptional Lie algebra F4 and polar actions on the Cayley hyperbolic plane. International Journal of Mathematics, 31(07), Article 07. https://doi.org/10.1142/s0129167x20500512
    58. Lienstromberg, C., & Müller, S. (2020). Local strong solutions to a quasilinear degenerate              fourth-order thin-film equation. NoDEA Nonlinear Differential Equations Appl., 27(2), Article 2. https://doi.org/10.1007/s00030-020-0619-x
    59. Magiera, J., Ray, D., Hesthaven, J. S., & Rohde, C. (2020). Constraint-aware neural networks for Riemann problems. J. Comput. Phys., 409(109345), Article 109345. https://doi.org/10.1016/j.jcp.2020.109345
    60. Maier, D. (2020). Construction of breather solutions for nonlinear Klein-Gordon equations    on periodic metric graphs. JOURNAL OF DIFFERENTIAL EQUATIONS, 268(6), Article 6. https://doi.org/10.1016/j.jde.2019.09.035
    61. Maier, D. (2020). BREATHER SOLUTIONS ON DISCRETE NECKLACE GRAPHS. OPERATORS AND MATRICES, 14(3), Article 3. https://doi.org/10.7153/oam-2020-14-48
    62. Michalowsky, S., Scherer, C., & Ebenbauer, C. (2020). Robust and structure exploiting optimisation algorithms : an integral quadratic constraint approach. International Journal of Control, 2020, 1–24. https://doi.org/10.1080/00207179.2020.1745286
    63. Minorics, L. A. (2020). Spectral asymptotics for Krein-Feller operators with respect to V-variable Cantor measures. Forum Mathematicum, 32(1), Article 1. https://doi.org/10.1515/forum-2018-0188
    64. Nagy, P.-A., & Semmelmann, U. (2020). Conformal Killing forms in Kaehler geometry.
    65. Naveira, A. M., & Semmelmann, U. (2020). Conformal Killing forms on nearly Kähler manifolds. Differential Geom. Appl., 70, 101628, 9. https://doi.org/10.1016/j.difgeo.2020.101628
    66. Oesting, M., & Schnurr, A. (2020). Ordinal patterns in clusters of subsequent extremes of regularly varying time series. Extremes, 23(4), Article 4. https://doi.org/10.1007/s10687-020-00391-2
    67. Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian(3)Active Learning for the Gaussian Process Emulator Using    Information Theory. ENTROPY, 22(8), Article 8. https://doi.org/10.3390/e22080890
    68. Ostrowski, L., Massa, F. C., & Rohde, C. (2020). A phase field approach to compressible droplet impingement. In G. Lamanna, S. Tonini, G. E. Cossali, & B. Weigand (Hrsg.), Droplet Interactions and Spray Processes (S. 113–126). Springer International Publishing. https://doi.org/10.1007/978-3-030-33338-6_9
    69. Ostrowski, L., & Rohde, C. (2020). Compressible multicomponent flow in porous media with Maxwell-Stefan diffusion. Math. Meth. Appl. Sci., 43(7), Article 7. https://doi.org/10.1002/mma.6185
    70. Ostrowski, L., & Rohde, C. (2020). Phase field modelling for compressible droplet impingement. In A. Bressan, M. Lewicka, D. Wang, & Y. Zheng (Hrsg.), Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018 (Bd. 10, S. 586–593). AIMS Series on Applied Mathematics. https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf
    71. Pelinovsky, D. E., & Schneider, G. (2020). The monoatomic FPU system as a limit of a diatomic FPU system. Appl. Math. Lett., 107, 7.
    72. Polyakova, A. P., Svetov, I. E., & Hahn, B. N. (2020). The Singular Value Decomposition of the Operators of the Dynamic Ray Transforms Acting on 2D Vector Fields. In Y. D. Sergeyev & D. E. Kvasov (Hrsg.), Numerical Computations: Theory and Algorithms (S. 446--453). Springer International Publishing. https://doi.org/10.1007/978-3-030-40616-5_42
    73. Rigaud, G., & Hahn, B. N. (2020). Reconstruction algorithm for 3D Compton scattering imaging with incomplete data. Inverse Problems in Science and Engineering, 29(7), Article 7. https://doi.org/10.1080/17415977.2020.1815723
    74. Rohde, C., & von Wolff, L. (2020). Homogenization of non-local Navier-Stokes-Korteweg equations for compressible liquid-vapour flow in porous media. SIAM J. Math. Anal., 52(6), Article 6. https://doi.org/10.1137/19M1242434
    75. Rybak, I., & Metzger, S. (2020). A dimensionally reduced Stokes-Darcy model for fluid flow in fractured porous media. Appl. Math. Comp., 384. https://doi.org/10.1016/j.amc.2020.125260
    76. Rösinger, C. A., & Scherer, C. W. (2020). Lifting to Passivity for $H_2$-Gain-Scheduling Synthesis with Full Block Scalings. IFAC-PapersOnline, 53(2), Article 2. https://doi.org/10.1016/j.ifacol.2020.12.570
    77. Rösinger, C. A., & Scherer, C. W. (2020). A Flexible Synthesis Framework of Structured Controllers for Networked Systems. IEEE Trans. Control Netw. Syst., 7(1), Article 1. https://doi.org/10.1109/TCNS.2019.2914411
    78. Schneider, G. (2020). The KdV approximation for a system with unstable resonances. Math. Methods Appl. Sci., 43(6), Article 6.
    79. Semmelmann, U., Wang, C., & Wang, M. Y.-K. (2020). On the linear stability of nearly Kähler 6-manifolds. Ann. Global Anal. Geom., 57(1), Article 1. https://doi.org/10.1007/s10455-019-09686-5
    80. Stein, A., & Barth, A. (2020). A Multilevel Monte Carlo Algorithm for Parabolic Advection-Diffusion Problems with Discontinuous Coefficients. In B. Tuffin & P. L’Ecuyer (Hrsg.), Monte Carlo and Quasi-Monte Carlo Methods (Bd. 324, S. 445--466). Springer International Publishing. https://doi.org/10.1007/978-3-030-43465-6_22
    81. Steinwart, I. (2020). Reproducing Kernel Hilbert Spaces Cannot Contain all Continuous Functions on a Compact Metric Space. Fakultät für Mathematik und Physik, Universität Stuttgart.
    82. Tielen, R., Möller, M., Göddeke, D., & Vuik, C. (2020). p-multigrid methods and their comparison to h-multigrid methods in Isogeometric Analysis. Computer Methods in Applied Mechanics and Engineering, 372, 113347. https://doi.org/10.1016/j.cma.2020.113347
    83. Vonica, A., Bhat, N., Phan, K., Guo, J., Iancu, L., Weber, J. A., Karger, A., Cain, J. W., Wang, E. C. E., DeStefano, G. M., O’Donnell-Luria, A. H., Christiano, A. M., Riley, B., Butler, S. J., & Luria, V. (2020). Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. Developmental Biology, 464(1), Article 1. https://doi.org/10.1016/j.ydbio.2020.03.015
  7. 2019

    1. Ammann, B., Kröncke, K., Weiss, H., & Witt, F. (2019). Holonomy rigidity for Ricci-flat metrics. Math. Z., 291(1–2), Article 1–2. https://doi.org/10.1007/s00209-018-2084-3
    2. Armiti-Juber, A., & Rohde, C. (2019). On Darcy-and Brinkman-type models for two-phase flow in asymptotically flat domains. Comput. Geosci., 23(2), Article 2. https://doi.org/10.1007/s10596-018-9756-2
    3. Armiti-Juber, A., & Rohde, C. (2019). Existence of weak solutions for a nonlocal pseudo-parabolic model for Brinkman two-phase flow in asymptotically flat porous media. J. Math. Anal. Appl., 477(1), Article 1. https://doi.org/10.1016/j.jmaa.2019.04.049
    4. Baggio, G., Zampieri, S., & Scherer, C. W. (2019). Gramian Optimization with Input-Power Constraints. 58th IEEE Conf. Decision and Control, 5686–5691. https://doi.org/10.1109/CDC40024.2019.9029169
    5. Bauer, R., Cummings, P., & Schneider, G. (2019). A model for the periodic water wave problem and its long wave amplitude equations. In Nonlinear water waves. An interdisciplinary interface. Based on the workshop held at the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria, November 27 -- December 7, 2017 (S. 123--138). Cham: Birkhäuser.
    6. Bauer, R., Düll, W.-P., & Schneider, G. (2019). The Korteweg--de Vries, Burgers and Whitham limits for a spatially periodic Boussinesq model. Proc. Roy. Soc. Edinburgh Sect. A, 149(1), Article 1. https://doi.org/10.1017/S0308210518000227
    7. Bhatt, A., Fehr, J., Grunert, D., & Haasdonk, B. (2019). A Posteriori Error Estimation in Model Order Reduction of Elastic Multibody Systems with Large Rigid Motion. In J. Fehr & B. Haasdonk (Hrsg.), IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. Springer. https://doi.org/DOI:10.1007/978-3-030-21013-7_7
    8. Bhatt, A., Fehr, J., & Haasdonk, B. (2019). Model order reduction of an elastic body under large rigid motion. Proceedings of ENUMATH 2017, Lect. Notes Comput. Sci. Eng.,(126), Article 126. https://doi.org/10.1007/978-3-319-96415-7\_23
    9. Bianchi, L. A., Blömker, D., & Schneider, G. (2019). Modulation equation and SPDEs on unbounded domains. Commun. Math. Phys., 371(1), Article 1.
    10. Brünnette, T., Santin, G., & Haasdonk, B. (2019). Greedy Kernel Methods for Accelerating Implicit Integrators for Parametric ODEs. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop (Hrsg.), Numerical Mathematics and Advanced Applications - ENUMATH 2017 (S. 889--896). Springer International Publishing.
    11. Buchfink, P., Bhatt, A., & Haasdonk, B. (2019). Symplectic Model Order Reduction with Non-Orthonormal Bases. Mathematical and Computational Applications, 24(2), Article 2. https://doi.org/10.3390/mca24020043
    12. Carlberg, K., Brencher, L., Haasdonk, B., & Barth, A. (2019). Data-Driven Time Parallelism via Forecasting. SIAM Journal on Scientific Computing, 41(3), Article 3. https://doi.org/10.1137/18M1174362
    13. Chirilus-Bruckner, M., Maier, D., & Schneider, G. (2019). Diffusive stability for periodic metric graphs. Math. Nachr., 292(6), Article 6.
    14. Colombo, R. M., LeFloch, P. G., Rohde, C., & Trivisa, K. (2019). Nonlinear Hyperbolic Problems: Modeling, Analysis, and Numerics. Oberwohlfach Rep., 16, Article 16. https://www.ems-ph.org/journals/show_issue.php?issn=1660-8933&vol=16&iss=2
    15. Conlon, R., Degeratu, A., & Rochon, F. (2019). Quasi-asymptotically conical Calabi-Yau manifolds. Geom. Topol., 23(1), Article 1. https://doi.org/10.2140/gt.2019.23.29
    16. Defant, A., Mastyo, M., Sánchez-Pérez, E. A., & Steinwart, I. (2019). Translation invariant maps on function spaces over locally compact groups. J. Math. Anal. Appl., 470, 795--820. https://doi.org/10.1016/j.jmaa.2018.10.033
    17. Denzel, A., Haasdonk, B., & Kästner, J. (2019). Gaussian Process Regression for Minimum Energy Path Optimization and Transition State Search. J. Phys. Chem. A, 123(44), Article 44. https://doi.org/10.1021/acs.jpca.9b08239
    18. Engelke, S., de Fondeville, R., & Oesting, M. (2019). Extremal behaviour of aggregated data with an application to downscaling. Biometrika, 106(1), Article 1. https://doi.org/10.1093/biomet/asy052
    19. Farooq, M., & Steinwart, I. (2019). Learning Rates for Kernel-Based Expectile Regression. Mach. Learn., 108, 203--227. https://doi.org/10.1007/s10994-018-5762-9
    20. Föll, R., Haasdonk, B., Hanselmann, M., & Ulmer, H. (2019). Deep Recurrent Gaussian Process with Variational Sparse Spectrum Approximation. https://openreview.net/forum?id=BkgosiRcKm
    21. Geck, M. (2019). Eigenvalues and Polynomial Equations. The American Mathematical Monthly, 126(10), Article 10. https://doi.org/10.1080/00029890.2019.1651168
    22. Griesemer, M., & Linden, U. (2019). Spectral theory of the Fermi polaron. Ann. Henri Poincaré, 20(6), Article 6. https://doi.org/10.1007/s00023-019-00796-1
    23. Gyorfi, L., Henze, N., & Walk, H. (2019). The Limit Distribution Of The Maximum Probability Nearest-Neighbour Ball. Journal of Applied Probability, 56(2), Article 2. https://doi.org/10.1017/jpr.2019.37
    24. Györfi, L., & Walk, H. (2019). Nearest neighbor based conformal prediction. Annales de l’ISUP, 63(2–3), Article 2–3. https://hal.science/hal-03603867
    25. Hahn, B. N., & Kienle Garrido, M.-L. (2019). An efficient reconstruction approach for a class of dynamic imaging operators. Inverse Problems, 35(9), Article 9. https://doi.org/10.1088/1361-6420/ab178b
    26. Hansmann, M., Kohler, M., & Walk, H. (2019). On the strong universal consistency of local averaging regression    estimates (vol 71, pg 1233, 2019). ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 71(5), Article 5. https://doi.org/10.1007/s10463-018-0687-4
    27. Heil, K., & Jentsch, T. (2019). A special class of symmetric Killing 2-tensors. JOURNAL OF GEOMETRY AND PHYSICS, 138, 103–123. https://doi.org/10.1016/j.geomphys.2018.12.009
    28. Holicki, T., & Scherer, C. W. (2019). A Homotopy Approach for Robust Output-Feedback Synthesis. Proc. 27th. Med. Conf. Control Autom., 87–93. https://doi.org/10.1109/MED.2019.8798536
    29. Holicki, T., & Scherer, C. W. (2019). Stability Analysis and Output-Feedback Synthesis of Hybrid Systems Affected by Piecewise Constant Parameters via Dynamic Resetting Scalings. Nonlinear Anal. Hybri., 34, 179–208. https://doi.org/10.1016/j.nahs.2019.06.003
    30. Homma, Y., & Semmelmann, U. (2019). The Kernel of the Rarita-Schwinger Operator on Riemannian Spin Manifolds. Comm. Math. Phys., 370(3), Article 3. https://doi.org/10.1007/s00220-019-03324-8
    31. Höllig, K., & Hörner, J. (2019). Aufgaben und Lösungen zur Höheren Mathematik. - 1. [Aufgabensammlung]. In Aufgaben und Lösungen zur Höheren Mathematik ; 1 (2. Auflage, Bd. 1, S. x, 235 Seiten). Springer Spektrum.
    32. Kluth, T., Hahn, B. N., & Brandt, C. (2019). Spatio-temporal concentration reconstruction using motion priors in magnetic particle imaging. Proc. Int. Workshop Magnetic Particle Imaging.
    33. Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2019). Newtonian and Single Layer Potentials for the Stokes System with L∞ Coefficients and the Exterior Dirichlet Problem. In S. Rogosin & A. O. Celebi (Hrsg.), Analysis as a Life: Dedicated to Heinrich Begehr on the Occasion of his 80th Birthday (S. 237--260). Springer International Publishing. https://doi.org/10.1007/978-3-030-02650-9_12
    34. Kohr, M., & Wendland, W. L. (2019). Boundary value problems for the Brinkman system with L∞ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach. Journal de Mathématiques Pures et Appliquées, 131, Article 131. https://doi.org/10.1016/j.matpur.2019.04.002
    35. Kuhn, T., Dürrwächter, J., Meyer, F., Beck, A., Rohde, C., & Munz, C.-D. (2019). Uncertainty quantification for direct aeroacoustic simulations of cavity flows. J. Theor. Comput. Acoust., 27(1), Article 1. https://doi.org/10.1142/S2591728518500445
    36. Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., Wittwar, D., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2019). Comparison of data-driven uncertainty quantification methods for  a carbon dioxide storage benchmark scenario. Comput. Geosci., 2(23), Article 23. https://doi.org/10.1007/s10596-018-9785-x
    37. Mazzeo, R., Swoboda, J., Weiss, H., & Witt, F. (2019). Asymptotic geometry of the Hitchin metric. Commun. Math. Phys., 367(1), Article 1. https://doi.org/10.1007/s00220-019-03358-y
    38. Miller, C. T., Gray, W. G., Kees, C. E., Rybak, I. V., & Shepherd, B. J. (2019). Modeling sediment transport in three-phase surface water systems. J. Hydraul. Res., 57. https://doi.org/10.1080/00221686.2019.1581673
    39. Mücke, N., & Steinwart, I. (2019). Empirical Risk Minimization in the Interpolating Regime with Application to Neural Network Learning. Fakultät für Mathematik und Physik, Universität Stuttgart.
    40. Oesting, M., Schlather, M., & Schillings, C. (2019). Sampling sup-normalized spectral functions for Brown-Resnick processes. Stat, 8, e228, 11. https://doi.org/10.1002/sta4.228
    41. Ostrowski, L., & Massa, F. (2019). An incompressible-compressible approach for droplet impact. In G. Cossali & S. Tonini (Hrsg.), Proceedings of the DIPSI Workshop 2019: Droplet ImpactPhenomena & Spray Investigations, Bergamo, Italy, 17th May 2019 (S. 18–21). Università degli studi di Bergamo. https://doi.org/10.6092/DIPSI2019_pp18-21
    42. Rösinger, C. A., & Scherer, C. W. (2019). A Flexible Synthesis Framework of Structured Controllers for Networked Systems. IEEE Trans. Control Netw. Syst., 7(1), Article 1. https://doi.org/10.1109/TCNS.2019.2914411
    43. Rösinger, C. A., & Scherer, C. W. (2019). A Scalings Approach to $H_2$-Gain-Scheduling Synthesis without Elimination. IFAC-PapersOnLine, 52(28), Article 28. https://doi.org/10.1016/j.ifacol.2019.12.347
    44. Santin, G., & Haasdonk, B. (2019). Kernel Methods for Surrogate Modelling. University of Stuttgart.
    45. Santin, G., & Haasdonk, B. (2019). Kernel Methods for Surrogate Modeling (ArXiv No. 1907.10556; Nummer 1907.10556). https://arxiv.org/abs/1907.10556
    46. Santin, G., Wittwar, D., & Haasdonk, B. (2019). Sparse approximation of regularized kernel interpolation by greedy algorithms.
    47. Schanz, M., Wasser, C., Allgaeuer, S., Schricker, S., Dippon, J., Alscher, MD., & Kimmel, M. (2019). Urinary TIMP-2·IGFBP7-guided randomized controlled intervention trial to prevent acute kidney injury in the emergency department. Transplant., 2019 Nov 1;34(11), 1902–1909. https://doi.org/10.1093/ndt/gfy186
    48. Schmidt, A., Wittwar, D., & Haasdonk, B. (2019). Rigorous and effective a-posteriori error bounds for nonlinear problems -- Application to RB methods. Advances in Computational Mathematics. https://doi.org/10.1007/s10444-019-09730-9
    49. Schricker, S., Heider, T., Schanz, M., Dippon, J., Alscher, MD., Weiss, H., Mettang, T., & Kimmel, M. (2019). Strong Associations Between Inflammation, Pruritus and Mental Health in Dialysis Patients. Acta Derm Venereol., 2019 May 1;99(6), 524–529. https://doi.org/10.2340/00015555-3128
    50. Semmelmann, U., & Weingart, G. (2019). The standard Laplace operator. Manuscripta Math., 158(1–2), Article 1–2. https://doi.org/10.1007/s00229-018-1023-2
    51. Seus, D., Radu, F. A., & Rohde, C. (2019). A linear domain decomposition method for two-phase flow in porous media. Numerical Mathematics and Advanced Applications ENUMATH 2017, 603–614. https://doi.org/10.1007/978-3-319-96415-7_55
    52. Sharanya, V., Sekhar, G. P. R., & Rohde, C. (2019). Surfactant-induced migration of a spherical droplet in non-isothermal Stokes flow. Physics of Fluids, 31(1), Article 1. https://doi.org/10.1063/1.5064694
    53. Steinwart, I. (2019). A Sober Look at Neural Network Initializations. Fakultät für Mathematik und Physik, Universität Stuttgart.
    54. Steinwart, I. (2019). Convergence Types and Rates  in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties. Potential Anal., 51, 361--395. https://doi.org/10.1007/s11118-018-9715-5
    55. Wenzel, T., Santin, G., & Haasdonk, B. (2019). A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability & uniform point distribution.
    56. Wittwar, D., & Haasdonk, B. (2019). Greedy Algorithms for Matrix-Valued Kernels. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop (Hrsg.), Numerical Mathematics and Advanced Applications ENUMATH 2017 (S. 113--121). Springer International Publishing.
    57. Wittwar, D., Santin, G., & Haasdonk, B. (2019). Part II on matrix valued kernels including analysis.
    58. Zhang, R., Kyriss, T., Dippon, J., Boedeker, E., & Friedel, G. (2019). Preoperative serum lactate dehydrogenase level as a predictor of major omplications following thoracoscopic lobectomy: a propensity-adjusted analysis. European Journal of Cardio-Thoracic Surgery, 56(2), Article 2. https://doi.org/10.1093/ejcts/ezz027
    59. Zhang, R., Dippon, J., & Friedel, G. (2019). Refined risk stratification for thoracoscopic lobectomy or segmentectomy. Journal of Thoracic Disease, 11(1), Article 1. https://doi.org/10.21037/jtd.2018.12.44
    60. Zhang R, Dippon J, F. G. (2019). Refined risk stratification for thoracoscopic lobectomy or segmentectomy. Dis., J Thorac, 2019 Jan;11(1), :222-230. https://doi.org/10.21037/jtd.2018.12.44
  8. 2018

    1. Afkham, B. M., Bhatt, A., Haasdonk, B., & Hesthaven, J. S. (2018). Symplectic Model-Reduction with a Weighted Inner Product.
    2. Altenbernd, M., & Göddeke, D. (2018). Soft fault detection and correction for multigrid. The International Journal of High Performance Computing Applications, 32(6), Article 6. https://doi.org/10.1177/1094342016684006
    3. Barth, A., & Kröker, I. (2018). Finite Volume Methods for Hyperbolic Partial Differential Equations with Spatial Noise. In C. Klingenberg & M. Westdickenberg (Hrsg.), Theory, Numerics and Applications of Hyperbolic Problems I (S. 125--135). Springer International Publishing.
    4. Barth, A., & Stein, A. (2018). A Study of Elliptic Partial Differential Equations with Jump Diffusion    Coefficients. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 6(4), Article 4. https://doi.org/10.1137/17M1148888
    5. Barth, A., & Stein, A. (2018). Approximation and simulation of infinite-dimensional Levy processes. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 6(2), Article 2. https://doi.org/10.1007/s40072-017-0109-2
    6. Barth, A., & Stüwe, T. (2018). Weak convergence of Galerkin approximations of stochastic partial  differential equations driven by additive Lévy noise. Math. Comput. Simulation, 143, 215--225. https://doi.org/10.1016/j.matcom.2017.03.007
    7. Bhatt, A., Fehr, J., Grunert, D., & Haasdonk, B. (2018). A Posteriori Error Estimation in Model Order Reduction of Elastic Multibody Systems with Large Rigid Motion. In J. Fehr & B. Haasdonk (Hrsg.), IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. Springer. https://doi.org/DOI:10.1007/978-3-030-21013-7_7
    8. Bhatt, A., & Haasdonk, B. (2018). Certified and structure-preserving model order reduction of EMBS. In RAMSA 2017, New Delhi.
    9. Bhatt, A., Haasdonk, B., & Moore, B. E. (2018). Structure-preserving Integration and Model Order Reduction. In Invited online talk in Department of Mathematics, IIT Roorkee.
    10. Blaschzyk, I., & Steinwart, I. (2018). Improved Classification Rates under Refined Margin Conditions. Electron. J. Stat., 12, 793--823. https://doi.org/10.1214/18-EJS1406
    11. Bradley, C. P., Emamy, N., Ertl, T., Göddeke, D., Hessenthaler, A., Klotz, T., Krämer, A., Krone, M., Maier, B., Mehl, M., Tobias, R., & Röhrle, O. (2018). Enabling Detailed, Biophysics-Based Skeletal Muscle Models on HPC Systems. Frontiers in Physiology, 9(816), Article 816. https://doi.org/10.3389/fphys.2018.00816
    12. Brehler, M., Schirwon, M., Göddeke, D., & Krummrich, P. (2018, Juli). Modeling the Kerr-Nonlinearity in Mode-Division Multiplexing Fiber  Transmission Systems on GPUs. Proceedings of Advanced Photonics 2018.
    13. Brünnette, T., Santin, G., & Haasdonk, B. (2018). Greedy kernel methods for accelerating implicit integrators for parametric ODEs. Proc. ENUMATH 2017.
    14. Buchfink, P. (2018). Structure-preserving Model Reduction for Elasticity [Diploma thesis].
    15. Chalons, C., Magiera, J., Rohde, C., & Wiebe, M. (2018). A finite-volume tracking scheme for two-phase compressible flow. Springer Proc. Math. Stat., 309--322. https://doi.org/10.1007/978-3-319-91545-6_25
    16. De Marchi, S., Iske, A., & Santin, G. (2018). Image reconstruction from scattered Radon data by weighted positive  definite kernel functions. Calcolo, 55(1), Article 1. https://doi.org/10.1007/s10092-018-0247-6
    17. de Rijk, B. (2018). Spectra and stability of spatially periodic pulse patterns              II: the critical spectral curve. SIAM J. Math. Anal., 50(2), Article 2. https://doi.org/10.1137/17M1127594
    18. de Rijk, B., & Sandstede, B. (2018). Diffusive stability against nonlocalized perturbations of              planar wave trains in reaction-diffusion systems. J. Differential Equations, 265(10), Article 10. https://doi.org/10.1016/j.jde.2018.07.011
    19. Degeratu, A., & Mazzeo, R. (2018). Fredholm theory for elliptic operators on quasi-asymptotically conical spaces. Proc. Lond. Math. Soc. (3), 116(5), Article 5. https://doi.org/10.1112/plms.12105
    20. Devroye, L., Gyorfi, L., Lugosi, G., & Walk, H. (2018). A nearest neighbor estimate of the residual variance. ELECTRONIC JOURNAL OF STATISTICS, 12(1), Article 1. https://doi.org/10.1214/18-EJS1438
    21. Dibak, C., Haasdonk, B., Schmidt, A., Dürr, F., & Rothermel, K. (2018). Enabling interactive mobile simulations through distributed reduced models. Pervasive and Mobile Computing, Elsevier BV, 45, 19--34. https://doi.org/10.1016/j.pmcj.2018.02.002
    22. Doelman, A., Rademacher, J., de Rijk, B., & Veerman, F. (2018). Destabilization Mechanisms of Periodic Pulse Patterns Near a Homoclinic Limit. SIAM J. Appl. Dyn. Syst., 17(2), Article 2. https://doi.org/10.1137/17M1122840
    23. Doering, M., Gyorfi, L., & Walk, H. (2018). Rate of Convergence of k-Nearest-Neighbor Classification Rule. JOURNAL OF MACHINE LEARNING RESEARCH, 18.
    24. Düll, W.-P. (2018). On the mathematical description of time-dependent surface water waves. Jahresber. Dtsch. Math.-Ver., 120(2), Article 2. https://doi.org/10.1365/s13291-017-0173-6
    25. Düll, W.-P., & Heß, M. (2018). Existence of long time solutions and validity of the nonlinear Schrödinger approximation for a quasilinear dispersive equation. J. Differential Equations, 264(4), Article 4. https://doi.org/10.1016/j.jde.2017.10.031
    26. Düll, W.-P., Hilder, B., & Schneider, G. (2018). Analysis of the embedded cell method in 1D for the numerical homogenization of metal-ceramic composite materials. J. Appl. Anal., 24(1), Article 1.
    27. Düll, W.-P., Hilder, B., & Schneider, G. (2018). Analysis of the embedded cell method in 1D for the numerical homogenization of metal-ceramic composite materials. J. Appl. Anal., 24(1), Article 1. https://doi.org/10.1515/jaa-2018-0007
    28. Dürrwächter, J., Kuhn, T., Meyer, F., Schlachter, L., & Schneider, F. (2018). A hyperbolicity-preserving discontinuous stochastic Galerkin scheme  for uncertain hyperbolic systems of equations. Journal of Computational and Applied Mathematics, 112602. https://doi.org/10.1016/j.cam.2019.112602
    29. Engwer, C., Altenbernd, M., Dreier, N.-A., & Göddeke, D. (2018, März). A high-level C++ approach to manage local errors, asynchrony and  faults in an MPI application. Proceedings of the 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2018).
    30. Escher, J., & Lienstromberg, C. (2018). Travelling waves in dilatant non-Newtonian thin films. J. Differential Equations, 264(3), Article 3. https://doi.org/10.1016/j.jde.2017.10.015
    31. Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2018). Approximate Riemann solver for compressible liquid vapor flow with  phase transition and surface tension. Comput. & Fluids, 169, 169–185. http://dx.doi.org/10.1016/j.compfluid.2017.03.026
    32. Fehr, J., Grunert, D., Bhatt, A., & Haasdonk, B. (2018). A Sensitivity Study of Error Estimation in Reduced Elastic Multibody Systems. Proceedings of MATHMOD 2018, Vienna, Austria.
    33. Fritz, P., Dippon, J., Müller, S., Goletz, S., Trautmann, C., Pappas, X., Ott, G., Brauch, H., Schwab, M., Winter, S., Mürdter, T., Brinkmann, F., Faisst, S., Rössle, S., Gerteis, A., & Friedel, G. (2018). Is Mistletoe Treatment Beneficial in Invasive Breast Cancer? A New Approach to an Unresolved Problem. Anticancer research, 38(3), Article 3. https://doi.org/10.21873/anticanres.12388
    34. Fritzen, F., Haasdonk, B., Ryckelynck, D., & Schöps, S. (2018). An algorithmic comparison of the Hyper-Reduction and the Discrete  Empirical Interpolation Method for a nonlinear thermal problem. Math. Comput. Appl. 2018, 23(1), Article 1. https://doi.org/doi:10.3390/mca23010008
    35. Geck, M. (2018). A first guide to the character theory of finite groups of Lie type. Local Representation Theory and Simple Groups (eds. R. Kessar, G. Malle, D. Testerman), 63--106. https://doi.org/10.4171/185-1/3
    36. Geck, M. (2018). On the values of unipotent characters in bad characteristic. Rendiconti del Seminario Matematico della Università di Padova, 141, 37--63. https://doi.org/10.4171/rsmup/14
    37. Georgiev, V., & Wirth, J. (2018). Zero resonances for localised potentials. Journal of Mathematical Physics, 59(7), Article 7. https://doi.org/10.1063/1.5027717
    38. Giesselmann, J., Kolbe, N., Lukacova-Medvidova, M., & Sfakianakis, N. (2018). Existence and uniqueness of global classical solutions to a two species  cancer invasion haptotaxis model. Accepted for publication in Discrete Contin. Dyn. Syst. Ser. B. https://arxiv.org/abs/1704.08208
    39. Gimperlein, H., Meyer, F., Özdemir, C., Stark, D., & Stephan, E. P. (2018). Boundary elements with mesh refinements for the wave equation. Numer. Math., 139(4), Article 4. https://doi.org/10.1007/s00211-018-0954-6
    40. Gimperlein, H., Meyer, F., Özdemir, C., & Stephan, E. P. (2018). Time domain boundary elements for dynamic contact problems. Computer Methods in Applied Mechanics and Engineering, 333, 147–175. https://doi.org/10.1016/j.cma.2018.01.025
    41. Griesemer, M., & Wünsch, A. (2018). On the domain of the Nelson Hamiltonian. J. Math. Phys., 59(4), Article 4. https://doi.org/10.1063/1.5018579
    42. Griesemer, M., & Linden, U. (2018). Stability of the two-dimensional Fermi polaron. Lett. Math. Phys., 108(8), Article 8. https://doi.org/10.1007/s11005-018-1055-2
    43. Guo, Y., & Scherer, C. W. (2018). Robust Gain-Scheduled Controller Design with a Hierarchical Structure. IFAC-PapersOnline, 51(25), Article 25. https://doi.org/10.1016/j.ifacol.2018.11.110
    44. Haasdonk, B., Hamzi, B., Santin, G., & Wittwar, D. (2018). Greedy Kernel Methods for Center Manifold Approximation (ArXiv No. 1810.11329; Nummer 1810.11329).
    45. Haasdonk, B., & Santin, G. (2018). Greedy Kernel Approximation for Sparse Surrogate Modeling. In W. Keiper, A. Milde, & S. Volkwein (Hrsg.), Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing (S. 21--45). Springer International Publishing. https://doi.org/10.1007/978-3-319-75319-5_2
    46. Haesaert, S., Weiland, S., & Scherer, C. W. (2018). A separation theorem for guaranteed $H_2$ performance through matrix inequalities. Automatica, 96, 306–313. https://doi.org/10.1016/j.automatica.2018.07.002
    47. Hang, H., Steinwart, I., Feng, Y., & Suykens, J. A. K. (2018). Kernel Density Estimation for Dynamical Systems. J. Mach. Learn. Res., 19, 1--49.
    48. Harbrecht, H., Wendland, W. L., & Zorii, N. (2018). Minimal energy problems for strongly singular Riesz kernels. Math. Nachr., 291, Article 291. https://doi.org/10.1002/mana.201600024
    49. Holicki, T., & Scherer, C. W. (2018). A Swapping Lemma for Switched Systems. IFAC-PapersOnLine, 51(25), Article 25. https://doi.org/10.1016/j.ifacol.2018.11.131
    50. Holicki, T., & Scherer, C. W. (2018). Output-Feedback Gain-Scheduling Synthesis for a Class of Switched Systems via Dynamic Resetting $D$-Scalings. 57th IEEE Conf. Decision and Control, 6440–6445. https://doi.org/10.1109/CDC.2018.8619128
    51. Hsiao, G. C., Steinbach, O., & Wendland, W. L. (2018). Boundary Element Methods: Foundation and Error Analysis. Encyclopedia of Computational Mechanics Second Edition, 62. https://doi.org/10.1002/9781119176817.ecm2007
    52. Kohler, M., Krzyzak, A., Tent, R., & Walk, H. (2018). Nonparametric quantile estimation using importance sampling. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 70(2), Article 2. https://doi.org/10.1007/s10463-016-0595-4
    53. Kohr, M., & Wendland, W. L. (2018). Variational approach for the Stokes and Navier-Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds. Calc. Var. Partial Differential Equations, 57(6), Article 6. https://doi.org/10.1007/s00526-018-1426-7
    54. Kohr, M., & Wendland, W. L. (2018). Layer potentials and Poisson problems for the nonsmooth              coefficient Brinkman system in Sobolev and Besov spaces. J. Math. Fluid Mech., 20(4), Article 4. https://doi.org/10.1007/s00021-018-0394-1
    55. Kovar\’ık, H., Ruszkowski, B., & Weidl, T. (2018). Melas-type bounds for the Heisenberg Laplacian on bounded domains. Journal of Spectral Theory, 8(2), Article 2. https://doi.org/10.4171/jst/200
    56. Kraemer, B., Scharpf, M., Keckstein, S., Dippon, J., Tsaousidis, C., Brunecker, K., Enderle, MD., Neugebauer, A., Nuessle, D., Fend, F., Brucker, S., Taran, FA., Kommoss, S., & Rothmund, R. (2018). A prospective randomized experimental study to investigate the peritoneal adhesion formation after waterjet injection and argon plasma coagulation (HybridAPC) in a rat model. Arch Gynecol Obstet., 2018, Apr;297(4), 961–967. https://doi.org/10.1007/s00404-018-4661-4
    57. Köppel, M., Martin, V., Jaffré, J., & Roberts, J. E. (2018). A Lagrange multiplier method for a discrete fracture model for flow  in porous media. (submitted). https://hal.archives-ouvertes.fr/hal-01700663v2
    58. Köppel, M., Martin, V., & Roberts, J. E. (2018). A stabilized Lagrange multiplier finite-element method for flow in  porous media with fractures. (submitted). https://hal.archives-ouvertes.fr/hal-01761591
    59. Köppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2018). Numerical modelling of a peripheral arterial stenosis using dimensionally  reduced models and kernel methods. International Journal for Numerical Methods in Biomedical Engineering, 0(ja), Article ja. https://doi.org/10.1002/cnm.3095
    60. Langer, A. (2018). Overlapping domain decomposition methods for total variation denoising. http://people.ricam.oeaw.ac.at/a.langer/publications/DDfTV.pdf
    61. Langer, A. (2018). Locally adaptive total variation for removing mixed Gaussian-impulse  noise. International Journal of Computer Mathematics, 19. https://www.tandfonline.com/doi/abs/10.1080/00207160.2018.1438603
    62. Langer, A. (2018). Investigating the influence of box-constraints on the solution of  a total variation model via an efficient primal-dual method. Journal of Imaging, 4, 1. http://www.mdpi.com/2313-433X/4/1/12
    63. Maboudi Afkham, B., & Hesthaven, J. S. (2018). Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems. Journal of Scientific Computing, 1–19. https://doi.org/10.1007/s10915-018-0653-6
    64. Magiera, J., & Rohde, C. (2018). A particle-based multiscale solver for compressible liquid-vapor flow. Springer Proc. Math. Stat., 291--304. https://doi.org/10.1007/978-3-319-91548-7_23
    65. Oesting, M. (2018). Equivalent representations of max-stable processes via $\ell^p$-norms. J. Appl. Probab., 55(1), Article 1. https://doi.org/10.1017/jpr.2018.5
    66. Oesting, M., Bel, L., & Lantuéjoul, C. (2018). Sampling from a max-stable process conditional on a homogeneous functional with an application for downscaling climate data. Scand. J. Stat., 45(2), Article 2. https://doi.org/10.1111/sjos.12299
    67. Oesting, M., Schlather, M., & Zhou, C. (2018). Exact and fast simulation of max-stable processes on a compact set using the normalized spectral representation. Bernoulli, 24(2), Article 2. https://doi.org/10.3150/16-BEJ905
    68. Oesting, M., & Stein, A. (2018). Spatial modeling of drought events using max-stable processes. Stoch. Env. Res. Risk A., 32(1), Article 1. https://doi.org/10.1007/s00477-017-1406-z
    69. Oesting, M., & Strokorb, K. (2018). Efficient simulation of Brown-Resnick processes based on variance reduction of Gaussian processes. Adv. in Appl. Probab., 50(4), Article 4. https://doi.org/10.1017/apr.2018.54
    70. Raja Sekhar, G. P., Sharanya, V., & Rohde, C. (2018). Effect of surfactant concentration and interfacial slip on the flow  past a viscous drop at low surface Péclet number. International Journal of Multiphase Flow, 107, 82–103. http://arxiv.org/abs/1609.03410
    71. Rigaud, G., & Hahn, B. N. (2018). 3D Compton scattering imaging and contour reconstruction for a class of Radon transforms. Inverse Problems, 34(7), Article 7. https://doi.org/10.1088/1361-6420/aabf0b
    72. Rohde, C., & Zeiler, C. (2018). On Riemann solvers and kinetic relations for isothermal two-phase  flows with surface tension. Z. Angew. Math. Phys., 3, Article 3. https://doi.org/10.1007/s00033-018-0958-1
    73. Rohde, C. (2018). Fully resolved compressible two-phase flow : modelling, analytical and numerical issues. In M. Bulicek, E. Feireisl, & M. Pokorný (Hrsg.), New trends and results in mathematical description of fluid flows (S. 115–181). Birkhäuser. https://doi.org/10.1007/978-3-319-94343-5
    74. Ruiz, P. A., Freiberg, U. R., & Kigami, J. (2018). Completely symmetric resistance forms on the stretched Sierpinski gasket. JOURNAL OF FRACTAL GEOMETRY, 5(3), Article 3. https://doi.org/10.4171/JFG/61
    75. Santin, G., Wittwar, D., & Haasdonk, B. (2018). Greedy regularized kernel interpolation (ArXiv preprint No. 1807.09575; Nummer 1807.09575). University of Stuttgart.
    76. Scherer, C. W., & Holicki, T. (2018). An IQC theorem for relations: Towards stability analysis of data-integrated systems. IFAC-PapersOnline, 51(25), Article 25. https://doi.org/10.1016/j.ifacol.2018.11.138
    77. Scherer, C. W., & Veenman, J. (2018). Stability analysis by dynamic dissipation inequalities: On merging frequency-domain techniques with time-domain conditions. Syst. Control Lett., 121, 7–15. https://doi.org/10.1016/j.sysconle.2018.08.005
    78. Schmidt, A., & Haasdonk, B. (2018). Data-driven surrogates of value functions and applications to feedback control for dynamical systems. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1766
    79. Schmidt, A., Wittwar, D., & Haasdonk, B. (2018). Rigorous and effective a-posteriori error bounds for nonlinear problems -- Application to RB methods [SimTech Preprint]. University of Stuttgart.
    80. Schmidt, A., & Haasdonk, B. (2018). Reduced basis approximation of large scale parametric algebraic Riccati equations. ESAIM: Control, Optimisation and Calculus of Variations, 24(1), Article 1. https://doi.org/10.1051/cocv/2017011
    81. Schuster, T., Hahn, B., & Burger, M. (2018). Dynamic inverse problems: modelling—regularization—numerics. Inverse Problems, 34(4), Article 4. https://doi.org/10.1088/1361-6420/aab0f5
    82. Seus, D., Mitra, K., Pop, I. S., Radu, F. A., & Rohde, C. (2018). A linear domain decomposition method for partially saturated flow  in porous media. Comp. Methods Appl. Mech. Eng., 333, 331--355. https://doi.org/10.1016/j.cma.2018.01.029
    83. Seus, D., Pop, I. S., Rohde, C., Mitra, K., & Radu, F. (2018). A linear domain decompostition method for partially saturated flow in porous media. Comput. Methods Appl. Mech. Eng., 333, 331–355. https://doi.org/10.1016/j.cma.2018.01.029
    84. Sharanya, V., Sekhar, G. P. R., & Rohde, C. (2018). The low surface Péclet number regime for surfactant-laden viscous droplets: Influence of surfactant concentration, interfacial slip effects and cross migration. Int. J. of Multiph. Flow, 107, Article 107. https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.008
    85. Wittwar, D., Santin, G., & Haasdonk, B. (2018). Interpolation with uncoupled separable matrix-valued kernels. ArXiv e-prints.
    86. Wittwar, D., & Haasdonk, B. (2018). Greedy Algorithms for Matrix-Valued Kernels. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1773
    87. Zhang, R., Kyriss, T., Dippon, J., Ciupa, S., Boedeker, E., & Friedel, G. (2018). Impact of comorbidity burden on morbidity following horacoscopic lobectomy: a propensity-matched analysis. J Thorac Dis., 2018 Mar;10(3), 1806–1814. https://doi.org/10.21037/jtd.2018.02.62
    88. Zhang, R., Kyriss, T., Dippon, J., Hansen, M., Boedeker, E., & Friedel, G. (2018). American Society of Anesthesiologists physical status facilitates risk stratification of elderly patients undergoing thoracoscopic lobectomy. European Journal of Cardio-Thoracic Surgery, 53(5), Article 5. https://doi.org/10.1093/ejcts/ezx436
  9. 2017

    1. Alkämper, M., & Klöfkorn, R. (2017). Distributed Newest Vertex Bisection. Journal of Parallel and Distributed Computing, 104, 1–11. http://dx.doi.org/10.1016/j.jpdc.2016.12.003
    2. Alkämper, M., Klöfkorn, R., & Gaspoz, F. (2017). A Weak Compatibility Condition for Newest Vertex Bisection in any  Dimension. http://arxiv.org/abs/1711.03141
    3. Alkämper, M., & Langer, A. (2017). Using DUNE-ACFem for Non-smooth Minimization of Bounded Variation  Functions. Archive of Numerical Software, 5(1), Article 1. https://journals.ub.uni-heidelberg.de/index.php/ans/article/view/27475
    4. Alla, A., Gunzburger, M., Haasdonk, B., & Schmidt, A. (2017). Model order reduction for the control of parametrized partial differential equations via dynamic programming principle. University of Stuttgart.
    5. Alla, A., Haasdonk, B., & Schmidt, A. (2017). Feedback control of parametrized PDEs via model order reduction and dynamic programming principle. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1765
    6. Alla, A., Schmidt, A., & Haasdonk, B. (2017). Model Order Reduction Approaches for Infinite Horizon Optimal Control  Problems via the HJB Equation. In P. Benner, M. Ohlberger, A. Patera, G. Rozza, & K. Urban (Hrsg.), Model Reduction of Parametrized Systems (S. 333--347). Springer International Publishing. https://doi.org/10.1007/978-3-319-58786-8_21
    7. Barth, A., & Fuchs, F. G. (2017). Uncertainty quantification for linear hyperbolic equations with    stochastic process or random field coefficients. APPLIED NUMERICAL MATHEMATICS, 121, 38–51. https://doi.org/10.1016/j.apnum.2017.06.009
    8. Barth, A., Harrach, B., Hyvoenen, N., & Mustonen, L. (2017). Detecting stochastic inclusions in electrical impedance tomography. INVERSE PROBLEMS, 33(11), Article 11. https://doi.org/10.1088/1361-6420/aa8f5c
    9. Barth, A., Harrach, B., Hyvönen, N., & Mustonen, L. (2017). Detecting stochastic inclusions in electrical impedance tomography. Inv. Prob., 33(11), Article 11. http://arxiv.org/abs/1706.03962
    10. Barth, A., & Stein, A. (2017). A study of elliptic partial differential equations with jump diffusion  coefficients.
    11. Baur, U., Benner, P., Haasdonk, B., Himpe, C., Maier, I., & Ohlberger, M. (2017). Comparison of methods for parametric model order reduction of instationary problems. In P. Benner, A. Cohen, M. Ohlberger, & K. Willcox (Hrsg.), Model Reduction and Approximation: Theory and Algorithms. SIAM Philadelphia. https://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-01.pdf
    12. Bhatt, A., & VanGorder, R. (2017). Chaos in a non-autonomous nonlinear system describing asymmetric  water wheels.
    13. Brehler, M., Schirwon, M., Göddeke, D., & Krummrich, P. M. (2017). A GPU-Accelerated Fourth-Order Runge-Kutta in the Interaction Picture Method for the Simulation of Nonlinear Signal Propagation in Multimode Fibers. Journal of Lightwave Technology, 35(17), Article 17. https://doi.org/10.1109/JLT.2017.2715358
    14. Brünnette, T., Santin, G., & Haasdonk, B. (2017). Greedy kernel methods for accelerating implicit integrators for parametric ODEs. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1767
    15. Bürger, R., & Kröker, I. (2017). Hybrid Stochastic Galerkin Finite Volumes for the Diffusively Corrected  Lighthill-Whitham-Richards Traffic Model. In C. Cancès & P. Omnes (Hrsg.), Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic  and Parabolic Problems: FVCA 8, Lille, France, June 2017 (S. 189--197). Springer International Publishing. https://doi.org/10.1007/978-3-319-57394-6_21
    16. Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2017). Partition of unity interpolation using stable kernel-based techniques. APPLIED NUMERICAL MATHEMATICS, 116(SI), Article SI. https://doi.org/10.1016/j.apnum.2016.07.005
    17. Chalons, C., Rohde, C., & Wiebe, M. (2017). A finite volume method for undercompressive shock waves in two space dimensions. ESAIM Math. Model. Numer. Anal., 51(5), Article 5. https://doi.org/10.1051/m2an/2017027
    18. Chertock, A., Degond, P., & Neusser, J. (2017). An asymptotic-preserving method for a relaxation of the    Navier-Stokes-Korteweg equations. JOURNAL OF COMPUTATIONAL PHYSICS, 335, 387–403. https://doi.org/10.1016/j.jcp.2017.01.030
    19. De Marchi, S., Idda, A., & Santin, G. (2017). A Rescaled Method for RBF Approximation. In G. E. Fasshauer & L. L. Schumaker (Hrsg.), Approximation Theory XV: San Antonio 2016 (S. 39--59). Springer International Publishing. https://doi.org/10.1007/978-3-319-59912-0_3
    20. De Marchi, S., Iske, A., & Santin, G. (2017). Image Reconstruction from Scattered Radon Data by Weighted Positive  Definite Kernel Functions.
    21. Diaz Ramos, J. C., Dominguez Vazquez, M., & Kollross, A. (2017). Polar actions on complex hyperbolic spaces. Mathematische Zeitschrift, 287(3), Article 3. https://doi.org/10.1007/s00209-017-1864-5
    22. Dibak, C., Schmidt, A., Dürr, F., Haasdonk, B., & Rothermel, K. (2017). Server-assisted interactive mobile simulations for pervasive applications. 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), 111--120. https://doi.org/10.1109/PERCOM.2017.7917857
    23. Dombry, C., Engelke, S., & Oesting, M. (2017). Bayesian inference for multivariate extreme value distributions. Electron. J. Stat., 11(2), Article 2. https://doi.org/10.1214/17-EJS1367
    24. Escher, J., Gosselet, P., & Lienstromberg, C. (2017). A note on model reduction for microelectromechanical systems. Nonlinearity, 30(2), Article 2. https://doi.org/10.1088/1361-6544/aa4ff9
    25. Escher, J., & Lienstromberg, C. (2017). A survey on second-order free boundary value problems              modelling MEMS with general permittivity profile. Discrete Contin. Dyn. Syst. Ser. S, 10(4), Article 4. https://doi.org/10.3934/dcdss.2017038
    26. Farooq, M., & Steinwart, I. (2017). An SVM-like Approach for Expectile Regression. Comput. Statist. Data Anal., 109, 159--181. https://doi.org/10.1016/j.csda.2016.11.010
    27. Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2017). A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension. J. Comput. Phys., 336, 347–374. https://doi.org/10.1016/j.jcp.2017.02.001
    28. Fehr, J., Grunert, D., Bhatt, A., & Hassdonk, B. (2017). A Sensitivity Study of Error Estimation in Reduced Elastic Multibody  Systems. Proceedings of MATHMOD 2018, Vienna, Austria.
    29. Feistauer, M., Bartos, O., Roskovec, F., & Sändig, A.-M. (2017). Analysis of the FEM and DGM for an elliptic problem with a nonlinear  Newton boundary condition. Proceeding of the EQUADIFF 17, 127–136. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/
    30. Feistauer, M., Roskovec, F., & Sändig, A.-M. (2017). Discontinuous Galerkin Method for an Elliptic Problem with Nonlinear  Boundary Conditions in a Polygon. IMA, 00, 1–31. https://doi.org/10.1093/imanum/drx070
    31. Fetzer, M., & Scherer, C. W. (2017). Full‐block multipliers for repeated, slope‐restricted scalar nonlinearities. Int. J. Robust Nonlin., 27(17), Article 17. https://doi.org/10.1002/rnc.3751
    32. Fetzer, M., & Scherer, C. W. (2017). Absolute stability analysis of discrete time feedback interconnections. IFAC-PapersOnLine, 1, Article 1. https://doi.org/10.1016/j.ifacol.2017.08.757
    33. Fetzer, M., & Scherer, C. W. (2017). Zames-Falb Multipliers for Invariance. IEEE Control Systems Letters, 1(2), Article 2. https://doi.org/10.1109/LCSYS.2017.2718556
    34. Fetzer, M., Scherer, C. W., & Veenman, J. (2017). Invariance with dynamic multipliers. IEEE Trans. Autom. Control, 63(7), Article 7. https://doi.org/10.1109/TAC.2017.2762764
    35. Fetzer, M. (2017). From classical absolute stability tests towards a comprehensive robustness analysis [Dissertation, University of Stuttgart]. https://doi.org/10.18419/opus-9726
    36. Fukuizumi, R., Marzuola, J. L., Pelinovsky, D., & Schneider, G. (Hrsg.). (2017). Nonlinear partial differential equations on graphs. Abstracts from the workshop held June 18--24, 2017. Oberwolfach Rep., 14(2), Article 2.
    37. Funke, S., Mendel, T., Miller, A., Storandt, S., & Wiebe, M. (2017). Map Simplification with Topology Constraints: Exactly and in Practice. Proceedings of the Ninteenth Workshop on Algorithm Engineering and  Experiments, ALENEX 2017, Barcelona, Spain, Hotel Porta Fira, January  17-18, 2017., 185--196. https://doi.org/10.1137/1.9781611974768.15
    38. Gaspoz, F. D., Kreuzer, C., Siebert, K., & Ziegler, D. (2017). A convergent time-space adaptive $dG(s)$ finite element method for  parabolic problems motivated by equal error distribution. In Submitted. https://arxiv.org/abs/1610.06814
    39. Gaspoz, F. D., Morin, P., & Veeser, A. (2017). A posteriori error estimates with point sources in fractional sobolev  spaces. Numerical Methods for Partial Differential Equations, 33(4), Article 4. https://doi.org/10.1002/num.22065
    40. Geck, M. (2017). On the construction of semisimple Lie algebras and Chevalley groups. Proceedings of the American Mathematical Society, 145(8), Article 8. https://doi.org/10.1090/proc/13600
    41. Geck, M. (2017). Minuscule weights and Chevalley                      groups. Finite Simple Groups: Thirty Years of the Atlas and Beyond (Celebrating the Atlases and Honoring John Conway, November 2-5, 2015 at Princeton University), 694, 159--176. https://doi.org/10.1090/conm/694/13955
    42. Geck, M. (2017). James’ Submodule Theorem and the Steinberg Module. Symmetry, Integrability and Geometry: Methods and Applications, 13. https://doi.org/10.3842/sigma.2017.091
    43. Geck, M. (2017). On the modular composition factors of the Steinberg representation. Journal of Algebra, 475, 370--391. https://doi.org/10.1016/j.jalgebra.2015.11.005
    44. Geck, M., & Müller, J. (2017). Invariant bilinear forms on W-graph representations and linear algebra over integral domains. Algorithmic and experimental methods in algebra, geometry and number theory (eds. G. Böckle, W. Decker, G. Malle), 311–360. https://doi.org/10.1007/978-3-319-70566-8_13
    45. Giesselmann, J., Lattanzio, C., & Tzavaras, A. E. (2017). Relative Energy for the Korteweg Theory and Related Hamiltonian Flows in Gas Dynamics. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 223(3), Article 3. https://doi.org/10.1007/s00205-016-1063-2
    46. Giesselmann, J., & Pryer, T. (2017). Goal-oriented error analysis of a DG scheme for a second gradient  elastodynamics model. In C. Cances & P. Omnes (Hrsg.), Finite Volumes for Complex Applications VIII-Methods and Theoretical  Aspects (Bd. 199). http://www.springer.com/de/book/9783319573960
    47. Giesselmann, J., & Pryer, T. (2017). A posteriori analysis for dynamic model adaptation in convection-dominated problems. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 27(13), Article 13. https://doi.org/10.1142/S0218202517500476
    48. Giesselmann, J., & Tzavaras, A. E. (2017). Stability properties of the Euler-Korteweg system with nonmonotone  pressures. Appl. Anal., 96(9), Article 9. https://doi.org/10.1080/00036811.2016.1276175
    49. Griesemer, M. (2017). On the dynamics of polarons in the strong-coupling limit. Rev. Math. Phys., 29(10), Article 10. https://doi.org/10.1142/S0129055X17500301
    50. Griesemer, M., Schmid, J., & Schneider, G. (2017). On the dynamics of the mean-field polaron in the              high-frequency limit. Lett. Math. Phys., 107(10), Article 10. https://doi.org/10.1007/s11005-017-0969-4
    51. Gutt, R., Kohr, M., Mikhailov, S., & Wendland, W. L. (2017). On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman  systems in Besov spaces on creased Lipschitz domains. Math. Meth. Appl. Sci., 18, 7780–7829. https://doi.org/10.1002/mma.4562
    52. Gutt, R., Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2017). On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 40(18), Article 18. https://doi.org/10.1002/mma.4562
    53. Haasdonk, B. (2017). Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction  for Stationary and Instationary Problems. In P. Benner, A. Cohen, M. Ohlberger, & K. Willcox (Hrsg.), Model Reduction and Approximation: Theory and Algorithms (S. 65--136). SIAM, Philadelphia. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938
    54. Hahn, B. N. (2017). Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography. Sensing and Imaging, 18(10), Article 10. https://doi.org/10.1007/s11220-017-0159-6
    55. Hahn, B. N. (2017). A motion artefact study and locally deforming objects in computerized tomography. Inverse Problems, 33(11), Article 11. https://doi.org/10.1088/1361-6420/aa8d7b
    56. Hang, H., & Steinwart, I. (2017). A Bernstein-type Inequality for Some Mixing Processes and Dynamical Systems with an Application to Learning. Ann. Statist., 45, 708--743. https://doi.org/10.1214/16-AOS1465
    57. Harbrecht, H., Wendland, W. L., & Zorii, N. (2017). Riesz energy problems for strongly singular kernels. Math. Nachr. https://doi.org/10.1002/mana.201600024
    58. Heil, K., Moroianu, A., & Semmelmann, U. (2017). Killing tensors on tori. J. Geom. Phys., 117, 1--6. https://doi.org/10.1016/j.geomphys.2017.02.010
    59. Hintermüller, M., Langer, A., Rautenberg, C. N., & Wu, T. (2017). Adaptive regularization for reconstruction from subsampled data. WIAS Preprint No. 2379. http://www.wias-berlin.de/preprint/2379/wias_preprints_2379.pdf
    60. Hintermüller, M., Rautenberg, C. N., Wu, T., & Langer, A. (2017). Optimal Selection of the Regularization Function in a Weighted Total  Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests. Journal of Mathematical Imaging and Vision, 1--19. https://link.springer.com/article/10.1007/s10851-017-0736-2
    61. Hänel, A., & Weidl, T. (2017). Spectral asymptotics for the Dirichlet Laplacian with a Neumann window via a Birman-Schwinger analysis of the Dirichlet-to-Neumann operator. Functional Analysis and Operator Theory for Quantum Physics, EMS Series of Congress Reports, J. Dittrich, et al. (Eds.), 315–352.
    62. Höllig, K. V., & Hörner, J. V. (Hrsg.). (2017). Aufgaben und Lösungen zur höheren Mathematik (S. xi, 533 Seiten) [Aufgabensammlung]. Springer Spektrum. http://deposit.d-nb.de/cgi-bin/dokserv?id=86f385b1e03e40a0a23a214a0c3c5f72&prov=M&dok_var=1&dok_ext=htm
    63. Kane, B. (2017). Using DUNE-FEM for Adaptive Higher Order Discontinuous Galerkin  Methods for Two-phase Flow in Porous Media. Archive of Numerical Software, 5(1), Article 1.
    64. Kane, B., Klöfkorn, R., & Gersbacher, C. (2017). hp--Adaptive Discontinuous Galerkin Methods for Porous Media Flow. International Conference on Finite Volumes for Complex Applications, 447--456.
    65. Kohr, M., Medkova, D., & Wendland, W. L. (2017). On the Oseen-Brinkman flow around an (m-1)-dimensional obstacle. Monatshefte für Mathematik, 483, 269–302. https://doi.org/MOFM-D16-00078
    66. Kohr, M., Mikhailov, S., & Wendland, W. L. (2017). Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian mani. J of Mathematical Fluid Mechanics, 19, 203–238.
    67. Kollross, A. (2017). Hyperpolar actions on reducible symmetric spaces. Transformation Groups, 22(1), Article 1. https://doi.org/10.1007/s00031-016-9384-7
    68. Kovarik, H., Ruszkowski, B., & Weidl, T. (2017). Spectral estimates for the Heisenberg Laplacian on cylinders. Functional Analysis and Operator Theory for Quantum Physics, EMS Series of Congress Reports, J. Dittrich, et al. (eds.), 433–446.
    69. Kutter, M., Rohde, C., & Sändig, A.-M. (2017). Well-posedness of a two scale model for liquid phase epitaxy with elasticity. Contin. Mech. Thermodyn., 29(4), Article 4. https://doi.org/10.1007/s00161-015-0462-1
    70. Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., Wittwar, D., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2017). Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1759
    71. Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Wittwar, D., Santin, G., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2017). Datasets and executables of data-driven uncertainty quantification benchmark in carbon dioxide storage. https://doi.org/10.5281/zenodo.933827
    72. Köppel, M., Kröker, I., & Rohde, C. (2017). Intrusive Uncertainty Quantification for Hyperbolic-Elliptic Systems  Governing Two-Phase Flow in Heterogeneous Porous Media. Comput. Geosci., 21, 807–832. https://doi.org/10.1007/s10596-017-9662-z
    73. Köppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2017). Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods. University of Stuttgart.
    74. Langer, A. (2017). Automated Parameter Selection in the L1-L2-TV Model for Removing  Gaussian Plus Impulse Noise. Inverse Problems, 33, 41. http://people.ricam.oeaw.ac.at/a.langer/publications/L1L2TVm.pdf
    75. Langer, A. (2017). Automated Parameter Selection for Total Variation Minimization in  Image Restoration. Journal of Mathematical Imaging and Vision, 57, 239--268. https://doi.org/10.1007/s10851-016-0676-2
    76. Lienstromberg, C. (2017). Well-posedness of a quasilinear evolution problem modelling              MEMS with general permittivity. J. Evol. Equ., 17(4), Article 4. https://doi.org/10.1007/s00028-016-0375-x
    77. Maboudi Afkham, B., & Hesthaven, J. (2017). Structure Preserving Model Reduction of Parametric Hamiltonian Systems. SIAM Journal on Scientific Computing, 39(6), Article 6. https://doi.org/10.1137/17M1111991
    78. Martini, I., Rozza, G., & Haasdonk, B. (2017). Certified Reduced Basis Approximation for the Coupling of Viscous  and Inviscid Parametrized Flow Models. Journal of Scientific Computing. https://doi.org/10.1007/s10915-017-0430-y
    79. Maz’ya, V., Natroshvili, D., Shargorodsky, E., & Wendland, W. L. (Hrsg.). (2017). Recent Trends in Operator Theory and Partial Differential Equations.  The Roland Duduchava Anniverary Volume (No. 258; Nummer 258). Birkhäuser/Springer International.
    80. Minbashian, H. (2017). Wavelet-based Multiscale Methods for Numerical Solution of Hyperbolic  Conservation Laws. Amirkabir University of Technology (Tehran 11/2017 Polytechnic),  Tehran, Iran.
    81. Minbashian, H., Adibi, H., & Dehghan, M. (2017). On Resolution of Boundary Layers of Exponential Profile with Small  Thickness Using an Upwind Method in IGA.
    82. Minbashian, H., Adibi, H., & Dehghan, M. (2017). An adaptive wavelet space-time SUPG method for hyperbolic conservation  laws. Numerical Methods for Partial Differential Equations, 33(6), Article 6. https://doi.org/10.1002/num.22180
    83. Minbashian, H., Adibi, H., & Dehghan, M. (2017). An Adaptive Space-Time Shock Capturing Method with High Order Wavelet  Bases for the System of Shallow Water Equations. International Journal of Numerical Methods for Heat & Fluid Flow.
    84. Oesting, M., Schlather, M., & Friederichs, P. (2017). Statistical post-processing of forecasts for extremes using bivariate Brown-Resnick processes with an application to wind gusts. Extremes, 20(2), Article 2. https://doi.org/10.1007/s10687-016-0277-x
    85. Pelinovsky, D., & Schneider, G. (2017). Bifurcations of standing localized waves on periodic graphs. Ann. Henri Poincaré, 18(4), Article 4.
    86. Rösinger, C. A., & Scherer, C. W. (2017). Structured Controller Design With Applications to Networked Systems. Proc. 56th IEEE Conf. Decision and Control. https://doi.org/10.1109/CDC.2017.8264365
    87. Santin, G., & Haasdonk, B. (2017). Convergence rate of the data-independent P-greedy algorithm in  kernel-based approximation. Dolomites Research Notes on Approximation, 10, 68--78. http://www.emis.de/journals/DRNA/9-2.html
    88. Santin, G., & Haasdonk, B. (2017). Non-symmetric kernel greedy interpolation.
    89. Santin, G., & Haasdonk, B. (2017). Greedy Kernel Approximation for Sparse Surrogate Modelling. University of Stuttgart.
    90. Schanz, M., Ketteler, M., Heck, M., Dippon, J., Alscher, MD., & Kimmel, M. (2017). Impact of an in-Hospital Patient Education Program on Choice of Renal Replacement Modality in Unplanned Dialysis Initiation. Kidney & blood pressure research, 42(5), Article 5. https://doi.org/10.1159/000484531
    91. Schanz, M., Schaaf, L., Dippon, J., Biegger, D., Fritz, P., Alscher, MD., & Kimmel, M. (2017). Renal effects of metallothionein induction by zinc in vitro and in vivo. BMC Nephrol, 2017 Mar 16;18(1), 91. https://doi.org/10.1186/s12882-017-0503-z
    92. Schmid, J., & Griesemer, M. (2017). Well-posedness of non-autonomous linear evolution equations in              uniformly convex spaces. Math. Nachr., 290(2–3), Article 2–3. https://doi.org/10.1002/mana.201500052
    93. Schmidt, A., & Haasdonk, B. (2017). Data-driven surrogates of value functions and applications to feedback  control for dynamical systems. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1742
    94. Schmidt, A., & Haasdonk, B. (2017). Reduced basis approximation of large scale parametric algebraic Riccati  equations. ESAIM: Control, Optimisation and Calculus of Variations. https://doi.org/10.1051/cocv/2017011
    95. Schneider, G., & Uecker, H. (2017). Nonlinear PDEs. A dynamical systems approach. In Grad. Stud. Math. (Bd. 182, S. xiii + 575). Providence, RI: American Mathematical Society (AMS).
    96. Steinwart, I. (2017). A Short Note on the Comparison of Interpolation Widths, Entropy Numbers, and Kolmogorov Widths. J. Approx. Theory, 215, 13--27. https://doi.org/10.1016/j.jat.2016.11.006
    97. Steinwart, I. (2017). Representation of Quasi-Monotone Functionals by Families of Separating Hyperplanes. Math. Nachr., 290, 1859--1883. https://doi.org/10.1002/mana.201500350
    98. Steinwart, I. (2017). A Short Note on the Comparison of Interpolation Widths, Wntropy Numbers, and Kolmogorov Widths. J. Approx. Theory, 215, 13--27.
    99. Steinwart, I., Sriperumbudur, B. K., & Thomann, P. (2017). Adaptive Clustering Using Kernel Density Estimators. Fakultät für Mathematik und Physik, Universität Stuttgart.
    100. Steinwart, I., & Thomann, P. (2017). liquidSVM: A Fast and Versatile SVM Package. Fakultät für Mathematik und Physik, Universität Stuttgart.
    101. Tempel, P., Schmidt, A., Haasdonk, B., & Pott, A. (2017). Application of the Rigid Finite Element Method to the Simulation of Cable-Driven Parallel Robots. University of Stuttgart.
    102. Thomann, P., Steinwart, I., Blaschzyk, I., & Meister, M. (2017). Spatial Decompositions for Large Scale SVMs. In A. Singh & J. Zhu (Hrsg.), Proceedings of Machine Learning Research Volume 54: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics 2017 (S. 1329--1337).
    103. Wirth, J. (2017). On t-dependent hyperbolic systems. Part 2. J. Math. Anal. Appl., 448(1), Article 1. https://doi.org/10.1016/j.jmaa.2016.11.026
    104. Wirth, J. (2017). Regular singular problems for hyperbolic systems and their              asymptotic integration. In New trends in analysis and interdisciplinary applications (S. 553--561). Birkhäuser/Springer, Cham. https://doi.org/10.1007/978-3-319-48812-7_70
    105. Wittwar, D., & Haasdonk, B. (2017). On uncoupled separable matrix-valued kernels. University of Stuttgart.
    106. Wittwar, D., Santin, G., & Haasdonk, B. (2017). Interpolation with uncoupled separable matrix-valued kernels. [ArXiv preprint 1807.09111, Accepted for publications in Dolomites Res. Notes Approx.].
    107. Wittwar, D., Schmidt, A., & Haasdonk, B. (2017). Reduced Basis Approximation for the Discrete-time Parametric Algebraic  Riccati Equation. University of Stuttgart.
  10. 2016

    1. Alkämper, M., Dedner, A., Klöfkorn, R., & Nolte, M. (2016). The DUNE-ALUGrid Module. Archive of Numerical Software, 4(1), Article 1. https://doi.org/10.11588/ans.2016.1.23252
    2. Alla, A., Schmidt, A., & Haasdonk, B. (2016). Model order reduction approaches for infinite horizon optimal control problems via the HJB equation. University of Stuttgart. https://arxiv.org/abs/1607.02337
    3. Allerhand, L., Gershon., E., & Shaked, U. (2016). Robust state-feedback control of stochastic state-multiplicative discrete-time linear switched systems with dwell time. Int. J. Robust Nonlin., 26(2), Article 2. https://doi.org/10.1002/rnc.3301
    4. Amsallem, D., & Haasdonk, B. (2016). PEBL-ROM: Projection-Error Based Local Reduced-Order Models. AMSES, Advanced Modeling and Simulation in Engineering Sciences, 3(6), Article 6. https://doi.org/10.1186/s40323-016-0059-7
    5. Antoulas, A. C., Haasdonk, B., & Peherstorfer, B. (2016). MORML 2016 Book of Abstracts. University of Stuttgart.
    6. Apprich, C., Höllig, K., Hörner, J., & Reif, U. (2016). Collocation with WEB--Splines. Advances in Computational Mathematics, 42(4), Article 4. https://doi.org/10.1007/s10444-015-9444-x
    7. Barseghyan, D., Exner, P., Kovarik, H., & Weidl, T. (2016). Semiclassical bounds in magnetic bottles. Reviews in Mathematical Physics, 28(1), Article 1. https://doi.org/10.1142/S0129055X16500021
    8. Barth, A., Bürger, R., Kröker, I., & Rohde, C. (2016). Computational uncertainty quantification for a clarifier-thickener  model with several random perturbations: A hybrid stochastic Galerkin  approach. Computers & Chemical Engineering, 89, 11-- 26. http://dx.doi.org/10.1016/j.compchemeng.2016.02.016
    9. Barth, A., & Fuchs, F. G. (2016). Uncertainty quantification for hyperbolic conservation laws with  flux coefficients given by spatiotemporal random fields. SIAM J. Sci. Comput., 38(4), Article 4. https://doi.org/10.1137/15M1027723
    10. Barth, A., & Kröker, I. (2016). Finite volume methods for hyperbolic partial differential equations  with spatial noise. In Springer Proceedings in Mathematics and Statistics: Bd. submitted. Springer International Publishing.
    11. Barth, A., Moreno-Bromberg, S., & Reichmann, O. (2016). A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate  Setting. Comp. Economics, 47(3), Article 3. https://doi.org/10.1007/s10614-015-9502-y
    12. Barth, A., Schwab, C., & Sukys, J. (2016). Multilevel Monte Carlo simulation of statistical solutions to  the Navier-Stokes equations. In Monte Carlo and quasi-Monte Carlo methods (Bd. 163, S. 209--227). Springer, Cham. https://doi.org/10.1007/978-3-319-33507-0_8
    13. Barth, A., & Stein, A. (2016). Approximation and simulation of infinite-dimensional Lévy processes. http://arxiv.org/abs/1612.05541
    14. Bastian, P., Engwer, C., Fahlke, J., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Milk, R., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., & Turek, S. (2016). Advances Concerning Multiscale Methods and Uncertainty Quantification  in EXA-DUNE. In H.-J. Bungartz, P. Neumann, & W. E. Nagel (Hrsg.), Software for Exascale Computing -- SPPEXA 2013--2015 (S. 25--43). Springer. https://doi.org/10.1007/978-3-319-40528-5_2
    15. Bastian, P., Engwer, C., Fahlke, J., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Milk, R., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., & Turek, S. (2016). Hardware-Based Efficiency Advances in the EXA-DUNE Project. In H.-J. Bungartz, P. Neumann, & W. E. Nagel (Hrsg.), Software for Exascale Computing -- SPPEXA 2013--2015 (S. 3--23). Springer. https://doi.org/10.1007/978-3-319-40528-5_1
    16. Baur, U., Benner, P., Haasdonk, B., Himpe, C., Maier, I., & Ohlberger, M. (2016). Comparison of methods for parametric model order reduction of instationary  problems. In P. Benner, A. Cohen, M. Ohlberger, & K. Willcox (Hrsg.), Model Reduction and Approximation for Complex Systems. Birkhäuser Publishing. https://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-01.pdf
    17. Betancourt, F., & Rohde, C. (2016). Finite-Volume Schemes for Friedrichs Systems with Involutions. App. Math. Comput., 272, Part 2, 420–439. https://doi.org/10.1016/j.amc.2015.03.050
    18. Bhatt, A. (2016). Structure-preserving Finite Difference Methods for Linearly Damped  Differential Equations. University of Central Florida.
    19. Bhatt, A., & Moore, B. E. (2016). Structure-preserving Exponential Runge-Kutta Methods. SIAM J. Sci Comp.
    20. Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2016). Approximating basins of attraction for dynamical systems via stable  radial bases. AIP Conf. Proc. https://doi.org/10.1063/1.4952177
    21. Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2016). Partition of unity interpolation using stable kernel-based techniques. Applied Numerical Mathematics. https://doi.org/10.1016/j.apnum.2016.07.005
    22. Chertock, A., Degond, P., & Neusser, J. (2016). An Asymptotic-Preserving Method for a Relaxation of the Navier-Stokes-Korteweg  Equations. Journal of Computational Physics, 335, 387–403. http://arxiv.org/abs/1512.04228
    23. Colombo, R. M., Guerra, G., & Schleper, V. (2016). The compressible to incompressible limit of 1D Euler equations: the  non-smooth case. Archive for Rational Mechanics and Analysis, 219(2), Article 2. https://doi.org/10.1007/s00205-015-0904-8
    24. Colombo, R. M., LeFloch, P. G., & Rohde, C. (2016). Hyperbolic techniques in Modelling, Analysis and Numerics. Oberwolfach Reports, 13, 1683–1751. https://doi.org/10.4171/OWR/2016/30
    25. Colombo, R. M., Guerra, G., & Schleper, V. (2016). The Compressible to Incompressible Limit of One Dimensional Euler    Equations: The Non Smooth Case. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 219(2), Article 2. https://doi.org/10.1007/s00205-015-0904-8
    26. Dedner, A., & Giesselmann, J. (2016). A posteriori analysis of fully discrete method of lines DG schemes  for systems of conservation laws. SIAM J. Numer. Anal., 54(6), Article 6. http://epubs.siam.org/toc/sjnaam/54/6
    27. Degeratu, A., & Walpuski, T. (2016). Rigid HYM connections on tautological bundles over ALE crepant resolutions in dimension three. SIGMA Symmetry Integrability Geom. Methods Appl., 12, Paper No. 017, 23. https://doi.org/10.3842/SIGMA.2016.017
    28. Diehl, D., Kremser, J., Kröner, D., & Rohde, C. (2016). Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions. Appl. Math. Comput., 272(2), Article 2. https://doi.org/10.1016/j.amc.2015.09.080
    29. Diehl, D., Kremser, J., Kröner, D., & Rohde, C. (2016). Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions. Appl. Math. Comput., 272(2), Article 2. https://doi.org/10.1016/j.amc.2015.09.080
    30. Dihlmann, M., & Haasdonk, B. (2016). A reduced basis Kalman filter for parametrized partial differential equations. ESAIM: COCV, 22(3), Article 3. https://doi.org/10.1051/cocv/2015019
    31. Dragomirescu, F. I., Eisenschmidt, K., Rohde, C., & Weigand, B. (2016). Perturbation solutions for the finite radially symmetric Stefan problem. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 104, 386–395. https://doi.org/10.1016/j.ijthermalsci.2016.01.019
    32. Dragomirescu, I., Eisenschmidt, K., Rohde, C., & Weigand, B. (2016). Perturbation solutions for the finite radially symmetric Stefan problem. Inter. J. Thermal Sci., 104, 386–395. https://doi.org/10.1016/j.ijthermalsci.2016.01.019
    33. Dumbser, M., Gassner, G., Rohde, C., & Roller, S. (2016). Preface to the special issue ``Recent Advances in Numerical Methods for    Hyperbolic Partial Differential Equations’’. APPLIED MATHEMATICS AND COMPUTATION, 272(2), Article 2. https://doi.org/10.1016/j.amc.2015.11.023
    34. Düll, W.-P., Hermann, A., Schneider, G., & Zimmermann, D. (2016). Justification of the 2D NLS equation for a fourth order nonlinear wave equation - quadratic resonances do not matter much in case of analytic initial conditions. J. Math. Anal. Appl., 436(2), Article 2.
    35. Düll, W.-P., Kashani, K. S., & Schneider, G. (2016). The validity of Whitham’s approximation for a Klein-Gordon-Boussinesq model. SIAM J. Math. Anal., 48(6), Article 6. https://doi.org/10.1137/16M1071687
    36. Düll, W.-P., Kashani, K. S., Schneider, G., & Zimmermann, D. (2016). Attractivity of the Ginzburg-Landau mode distribution for a pattern forming system with marginally stable long modes. J. Differ. Equations, 261(1), Article 1.
    37. Düll, W.-P., Schneider, G., & Wayne, C. E. (2016). Justification of the nonlinear Schrödinger equation for the evolution of gravity driven 2D surface water waves in a canal of finite depth. Arch. Ration. Mech. Anal., 220(2), Article 2. https://doi.org/10.1007/s00205-015-0937-z
    38. Escher, J., & Lienstromberg, C. (2016). Finite-time singularities of solutions to              microelectromechanical systems with general permittivity. Ann. Mat. Pura Appl. (4), 195(6), Article 6. https://doi.org/10.1007/s10231-016-0549-8
    39. Escher, J., & Lienstromberg, C. (2016). A qualitative analysis of solutions to microelectromechanical              systems with curvature and nonlinear permittivity profile. Comm. Partial Differential Equations, 41(1), Article 1. https://doi.org/10.1080/03605302.2015.1105259
    40. Fetzer, M., & Scherer, C. W. (2016). A General Integral Quadratic Constraints Theorem with Applications to a Class of Sampled-Data Systems. SIAM J. Contr. Optim., 54(3), Article 3. https://doi.org/10.1137/140985482
    41. Fetzer, M., & Scherer, C. W. (2016). Stability and Performance Analysis on Sobolev Spaces. 55th IEEE Conf. Decision and Control, 7264–7269. https://doi.org/10.1109/CDC.2016.7799390
    42. Fritzen, F., Haasdonk, B., Ryckelynck, D., & Schöps, S. (2016). An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem [Arxiv Report]. University of Stuttgart. https://arxiv.org/abs/1610.05029
    43. Garmatter, D., Haasdonk, B., & Harrach, B. (2016). A reduced Landweber Method for Nonlinear Inverse Problems. Inverse Problems, 32(3), Article 3. http://dx.doi.org/10.1088/0266-5611/32/3/035001
    44. Gaspoz, F. D., Heine, C.-J., & Siebert, K. G. (2016). Optimal Grading of the Newest Vertex Bisection and H1-Stability of  the L2-Projection. IMA Journal of Numerical Analysis, 36(3), Article 3. https://doi.org/10.1093/imanum/drv044
    45. Geveler, M., Reuter, B., Aizinger, V., Göddeke, D., & Turek, S. (2016). Energy efficiency of the simulation of three-dimensional coastal  ocean circulation on modern commodity and mobile processors -- A  case study based on the Haswell and Cortex-A15 microarchitectures. Computer Science -- Research and Development, 31(4), Article 4. https://doi.org/10.1007/s00450-016-0324-5
    46. Giesselmann, J. (2016). Relative entropy based error estimates for discontinuous Galerkin  schemes. Bull. Braz. Math. Soc. (N.S.), 47(1), Article 1. https://doi.org/10.1007/s00574-016-0144-z
    47. Giesselmann, J., & LeFloch, P. G. (2016). Formulation and convergence of the finite volume method for conservation  laws on spacetimes with boundary. ArXiv. http://arxiv.org/abs/1607.03944
    48. Giesselmann, J., & Pryer, T. (2016). Reduced relative entropy techniques for a posteriori analysis of  multiphase problems in elastodynamics. IMA J. Numer. Anal., 36(4), Article 4. http://imajna.oxfordjournals.org/content/36/4/1685
    49. Giesselmann, J., & Pryer, T. (2016). Reduced relative entropy techniques for a priori analysis of multiphase problems in elastodynamics. BIT Numerical Mathematics, 56, 99-- 127. https://doi.org/10.1007/s10543-015-0560-2
    50. Gilg, S., Pelinovsky, D., & Schneider, G. (2016). Validity of the NLS approximation for periodic quantum graphs. NoDEA, Nonlinear Differ. Equ. Appl., 23(6), Article 6.
    51. Gisselmann, J., & Pryer, T. (2016). Reduced relative entropy techniques for a posteriori analysis of    multiphase problems in elastodynamics. IMA JOURNAL OF NUMERICAL ANALYSIS, 36(4), Article 4. https://doi.org/10.1093/imanum/drv052
    52. Gorodski, C., & Kollross, A. (2016). Some remarks on polar actions. Annals of global analysis and geometry, 49(1), Article 1. https://doi.org/10.1007/s10455-015-9479-8
    53. Guerra, G., & Schleper, V. (2016). A coupling between a 1D compressible-incompressible limit and the  1D p-system in the non smooth case. Bulletin of the Brazilian Mathematical Society, New Series, 47(1), Article 1. https://doi.org/10.1007/s00574-016-0146-x
    54. Gutt, R., Kohr, M., Pintea, C., & Wendland, W. L. (2016). On the transmission problems for the Oseen and Brinkman systems on  Lipschitz domains in compact Riemannian manifolds. Math. Nachr, 289, 471–484.
    55. Hahn, B. N. (2016). Null space and resolution in dynamic computerized tomography. Inverse Problems, 32(2), Article 2. https://doi.org/10.1088/0266-5611/32/2/025006
    56. Hahn, B. N., & Quinto, E. T. (2016). Detectable singularities from dynamic Radon data. SIAM J. Imaging Sciences, 9(3), Article 3. https://doi.org/10.1137/16M1057917
    57. Hang, H., Feng, Y., Steinwart, I., & Suykens, J. A. K. (2016). Learning theory estimates with observations from general stationary stochastic processes. Neural Computation, 28, 2853--2889. https://doi.org/10.1162/NECO_a_00870
    58. Harbrecht, H., Wendland, W. L., & Zorii, N. (2016). Rapid solution of minimal Riesz energy problems. Numer. Methods Partial Diff. Equ., 32, 1535–1552.
    59. Holicki, T., & Scherer, C. W. (2016). Controller synthesis for distributed systems over undirected graphs. 55th IEEE Conf. Decision and Control, 5238–5244. https://doi.org/10.1109/CDC.2016.7799071
    60. Hänel, A., & Weidl, T. (2016). Eigenvalue asymptotics for an elastic strip and an elastic plate with a crack. Quarterly Journal of Mechanics and Applied Mathematics, 69(4), Article 4. https://doi.org/10.1093/qjmam/hbw009
    61. Kabil, B., & Rodrigues, M. (2016). Spectral validation of the Whitham equations for periodic waves of  lattice dynamical systems. Journal of Differential Equations, 260(3), Article 3. https://doi.org/10.1016/j.jde.2015.10.025
    62. Kabil, B., & Rohde, C. (2016). Persistence of undercompressive phase boundaries for isothermal Euler equations including configurational forces and surface tension. Math. Meth. Appl. Sci., 39(18), Article 18. https://doi.org/10.1002/mma.3926
    63. Kohr, M., de Cristoforis, L., Mikhailov, S., & Wendland, W. L. (2016). Integral potential method for transmission problem with Lipschitz interface in R3 for the Stokes and Darcy-Forchheimer-Brinkman PED systems. ZAMP, 67:116, 1–30.
    64. Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2016). On the Robin transmission boundary value problem for the nonlinear  Darcy-Forchheimer-Brinkman and Navier-Stokes system. J. Math. Fluid Mechanics, 18, 293–329.
    65. Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2016). Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian manifolds. Journal of Mathematical Fluid Dynamics, DOI 10.1007/s 00021-16-0273-6.
    66. Kohr, M., Pintea, C., & Wendland, W. L. (2016). Poisson transmission problems for L^infty perturbations of the Stokes  system on Lipschitz domains on compact Riemannian manifolds. J. Dyn. Diff. Equations, DOI 110.1007/s10884-014-9359-0.
    67. Kohr, M., de Cristoforis, M. L., & Wendland, W. L. (2016). On the Robin-Transmission Boundary Value Problems for the Nonlinear    Darcy-Forchheimer-Brinkman and Navier-Stokes Systems. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 18(2), Article 2. https://doi.org/10.1007/s00021-015-0236-3
    68. Köppel, M., & Rohde, C. (2016). Uncertainty Quantification for Two-Phase Flow in Heterogeneous Porous  Media. PAMM Proc. Appl. Math. Mech., 16(1), Article 1. https://doi.org/10.1002/pamm.201610363
    69. Lienstromberg, C. (2016). On qualitative properties of solutions to              microelectromechanical systems with general permittivity. Monatsh. Math., 179(4), Article 4. https://doi.org/10.1007/s00605-015-0744-5
    70. List, F., & Radu, F. A. (2016). A study on iterative methods for solving Richards’ equation. COMPUTATIONAL GEOSCIENCES, 20(2), Article 2. https://doi.org/10.1007/s10596-016-9566-3
    71. Magiera, J., Rohde, C., & Rybak, I. (2016). A hyperbolic-elliptic model problem for coupled surface-subsurface  flow. Transp. Porous Media, 114, 425–455. https://doi.org/10.1007/S11242-015-0548-Z
    72. Meister, M., & Steinwart, I. (2016). Optimal Learning Rates for Localized SVMs. J. Mach. Learn. Res., 17, 1–44.
    73. Nguyen Tien, H., Scherer, C. W., Scherpen, J. M. A., & Müller, V. (2016). Linear Parameter Varying Control of Doubly Fed Induction Machines. IEEE Trans. Ind. Electron., 63(1), Article 1. https://doi.org/10.1109/TIE.2015.2465895
    74. Ostrowski, L., Ziegler, B., & Rauhut, G. (2016). Tensor decomposition in potential energy surface representations. The Journal of Chemical Physics, 145(10), Article 10. https://doi.org/10.1063/1.4962368
    75. Redeker, M., & Haasdonk, B. (2016). A POD-EIM reduced two-scale model for precipitation in porous media. MCMDS, Mathematical and Computer Modelling of Dynamical Systems. https://doi.org/10.1080/13873954.2016.1198384
    76. Redeker, M., Pop, I. S., & Rohde, C. (2016). Upscaling of a Tri-Phase Phase-Field Model for Precipitation in Porous  Media. IMA J. Appl. Math., 81(5), 898–939. https://doi.org/10.1093/imamat/hxw023
    77. Rossi, E., & Schleper, V. (2016). Convergence of a numerical scheme for a mixed hyperbolic-parabolic  system in two space dimensions. ESAIM Math. Model. Numer. An., 50(2), Article 2. https://doi.org/10.1051/m2an/2015050
    78. Rybak, I., & Magiera, J. (2016). Decoupled schemes for free flow and porous medium systems. In T. D. et al. (Hrsg.), Domain Decomposition Methods in Science and Engineering XXII (Bd. 104, S. 613--621). Springer. https://doi.org/10.1007/978-3-319-18827-0\_54
    79. Santin, G. (2016). Approximation in kernel-based spaces, optimal subspaces and approximation  of eigenfunction [Doctoral School in Mathematical Sciences, University of Padova]. http://paduaresearch.cab.unipd.it/9186/
    80. Santin, G., & Schaback, R. (2016). Approximation of eigenfunctions in kernel-based spaces. ADVANCES IN COMPUTATIONAL MATHEMATICS, 42(4), Article 4. https://doi.org/10.1007/s10444-015-9449-5
    81. Scherer, C. W. (2016). Lossless $H_ınfty$-synthesis for 2D systems (special issue JCW). Syst. Control Lett., 95, 25–35. https://doi.org/10.1016/j.sysconle.2016.02.011
    82. Schleper, V. (2016). A HLL-type Riemann solver for two-phase flow with surface forces  and phase transitions. Appl. Numer. Math., 108, 256–270. https://doi.org/10.1016/j.apnum.2015.12.010
    83. Schmidt, A., & Haasdonk, B. (2016). Reduced basis method for H2 optimal feedback control problems. IFAC-PapersOnLine, 49(8), Article 8. http://dx.doi.org/10.1016/j.ifacol.2016.07.462
    84. Schneider, G. (2016). Validity and non-validity of the nonlinear Schrödinger equation as a model for water waves. In Lectures on the theory of water waves. Papers from the talks given at the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, July -- August, 2014 (S. 121--139). Cambridge: Cambridge University Press.
    85. Sharanya, V., Raja Sekhar, G. P., & Rohde, C. (2016). Bed of polydisperse viscous spherical drops under thermocapillary  effects. Z. Angew. Math. Phys., 67(4), Article 4. https://doi.org/10.1007/s00033-016-0699-y
    86. Stein, A. (2016). Exakte Simulation von Optionspreisen und Sensitivitäten unter  stochastischer Volatilität [Master Thesis].
    87. Steinwart, I., Thomann, P., & Schmid, N. (2016). Learning with Hierarchical Gaussian Kernels. Fakultät für Mathematik und Physik, Universität Stuttgart.
    88. Trottemant, E. J., Mazo, M., & Scherer, C. W. (2016). Synthesis of Robust Piecewise Affine Output-Feedback Strategies. J. Guid. Control Dynam., 39(7), Article 7. https://doi.org/10.2514/1.G001343
    89. Trottemant, E. J., Scherer, C. W., & Mazo, M. (2016). Optimality of robust disturbance-feedback strategies. Int. J. Robust Nonlin., 26(7), Article 7. https://doi.org/10.1002/rnc.3360
    90. Veenman, J., Lahr, M., & Scherer, C. W. (2016). Robust controller synthesis with unstable weights. 55th IEEE Conf. Decision and Control, 2390–2395. https://doi.org/10.1109/CDC.2016.7798620
    91. Veenman, J., Scherer, C. W., & Köroglu, H. (2016). Robust stability and performance analysis with integral quadratic constraints. Eur. J. Control, 31, 1–32. https://doi.org/10.1016/j.ejcon.2016.04.004
  11. 2015

    1. Allerhand, L. I. (2015). Stability of adaptive control in the presence of input disturbances and $H_ınfty$ performance. IFAC-PapersOnLine, 48(14), Article 14. https://doi.org/10.1016/j.ifacol.2015.09.437
    2. Allerhand, L. I., Gershon, E., & Shaked, U. (2015). State-feedback Control of Stochastic Discrete-time Linear Switched Systems with Dwell Time. Eur. Control Conf., 452–457. https://doi.org/10.1109/ECC.2015.7330585
    3. Allerhand, L. I., & Shaked, U. (2015). Soft Controller Switching with Guaranteed $H_ınfty$ Performance. IFAC-PapersOnLine, 48(11), Article 11. https://doi.org/10.1016/j.ifacol.2015.09.296
    4. Amsallem, D., Farhat, C., & Haasdonk, B. (2015). Special Issue on Model Reduction. IJNME, International Journal of Numerical Methods in Engineering, 102(5), Article 5. https://doi.org/10.1002/nme.4889
    5. Amsallem, D., Farhat, C., & Haasdonk, B. (2015). Editorial: Special Issue on Model Reduction. IJNME, International Journal of Numerical Methods in Engineering, 102(5), Article 5. https://doi.org/10.1002/nme.4889
    6. Amsallem, D., & Haasdonk, B. (2015). PEBL-ROM: Projection-Error Based Local Reduced-Order Models [SimTech Preprint]. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1436
    7. Burkovska, O., Haasdonk, B., Salomon, J., & Wohlmuth, B. (2015). Reduced basis methods for pricing options with the Black-Scholes and Heston model. SIAM journal on Financial Mathematics (SIFIN), 6(1), Article 1. https://doi.org/10.1137/140981216
    8. Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2015). RBF approximation of large datasets by partition of unity and local  stabilization. In J. Vigo-Aguiar (Hrsg.), CMMSE 2015 : Proceedings of the 15th International Conference on  Mathematical Methods in Science and Engineering (S. 317--326).
    9. Chirilus-Bruckner, M., Düll, W.-P., & Schneider, G. (2015). NLS approximation of time oscillatory long waves for equations with quasilinear quadratic terms. Math. Nachr., 288(2–3), Article 2–3. https://doi.org/10.1002/mana.201200325
    10. De Marchi, S., & Santin, G. (2015). Fast computation of orthonormal basis for RBF spaces through Krylov  space methods. BIT Numerical Mathematics, 55(4), Article 4. https://doi.org/10.1007/s10543-014-0537-6
    11. Dihlmann, M., & Haasdonk, B. (2015). A reduced basis Kalman filter for parametrized partial differential  equations. ESAIM: Control, Optimisation and Calculus of Variations. https://doi.org/10.1051/cocv/2015019
    12. Dihlmann, M. A., & Haasdonk, B. (2015). Certified PDE-constrained parameter optimization using reduced  basis surrogate models for evolution problems. COAP, Computational Optimization and Applications, 60(3), Article 3. https://doi.org/DOI: 10.1007/s10589-014-9697-1
    13. do Nascimento, W. N., & Wirth, J. (2015). Wave equations with mass and dissipation. Adv. Differential Equations, 20(7–8), Article 7–8. http://projecteuclid.org/euclid.ade/1431115712
    14. Garmatter, D., Haasdonk, B., & Harrach, B. (2015). A reduced Landweber Method for Nonlinear Inverse Problems. University of Stuttgart.
    15. Geck, M. (2015). On Kottwitz’ conjecture for twisted involutions. Journal of Lie Theory, 25(2), Article 2. https://www.heldermann.de/JLT/JLT25/JLT252/jlt25019.htm
    16. Geck, M. (2015). Eigenvalues of Real Symmetric Matrices. The American Mathematical Monthly, 122(5), Article 5. https://doi.org/10.4169/amer.math.monthly.122.5.482
    17. Geck, M., & Bonnafe, C. (2015). Hecke algebras with unequal parameters and Vogan’s left cell invariants. Representations of reductive groups. In Honor of the 60th birthday of David A. Vogan, Jr (eds. M. Nevins and P. Trapa), 312, 173--188. https://doi.org/10.1007/978-3-319-23443-4_6
    18. Geck, M., & Halls, A. (2015). On the Kazhdan-Lusztig cells in type E8. Mathematics of Computation, 84(296), Article 296. https://doi.org/10.1090/mcom/2963
    19. Gershon, E., Shaked, U., & Allerhand, L. I. (2015). Stochastic Linear Systems: Robust $H_ınfty$ Control via Vertex-dependent Approach. 23rd Med. Conf. Control and Automation, 638–643. https://doi.org/10.1109/MED.2015.7158818
    20. Gerth, D., Hahn, B. N., & Ramlau, R. (2015). The method of the approximate inverse for atmospheric tomography. Inverse Problems, 31(6), Article 6. https://doi.org/10.1088/0266-5611/31/6/065002
    21. Giesselmann, J. (2015). Relative entropy in multi-phase models of 1d elastodynamics: Convergence    of a non-local to a local model. JOURNAL OF DIFFERENTIAL EQUATIONS, 258(10), Article 10. https://doi.org/10.1016/j.jde.2015.01.047
    22. Giesselmann, J. (2015). Low Mach asymptotic preserving scheme for the Euler-Korteweg model. IMA J. Numer. Anal., 35(2), Article 2. https://doi.org/10.1093/imanum/dru022
    23. Giesselmann, J. (2015). Entropy as a fundamental principle in hyperbolic conservation laws and related models [Habilitationsschrift].
    24. Giesselmann, J., Makridakis, C., & Pryer, T. (2015). A posteriori analysis of discontinuous Galerkin schemes for systems  of hyperbolic conservation laws. SIAM J. Numer. Anal., 53, 1280--1303. http://dx.doi.org/10.1137/140970999
    25. Giesselmann, J., & Pryer, T. (2015). ENERGY CONSISTENT DISCONTINUOUS GALERKIN METHODS FOR A    QUASI-INCOMPRESSIBLE DIFFUSE TWO PHASE FLOW MODEL. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION  MATHEMATIQUE ET ANALYSE NUMERIQUE, 49(1), Article 1. https://doi.org/10.1051/m2an/2014033
    26. Grosan, T., Kohr, M., & Wendland, W. L. (2015). Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman  system in Lipschitz domains. Math. Meth. Appl. Sciences, 38, 3615–3628. https://doi.org/10.1002/mma3302
    27. Gugat, M., Herty, M., & Schleper, V. (2015). flow control in gas networks: exact controllability to a given demand    (vol 34, pg 745, 2011). MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 38(5), Article 5. https://doi.org/10.1002/mma.3122
    28. Göddeke, D., Altenbernd, M., & Ribbrock, D. (2015). Fault-tolerant finite-element multigrid algorithms with hierarchically  compressed asynchronous checkpointing. Parallel Computing, 49, 117–135. https://doi.org/10.1016/j.parco.2015.07.003
    29. Hahn, B. N. (2015). Dynamic linear inverse problems with moderate movements of the object: Ill-posedness and regularization. Inverse Problems & Imaging, 9(2), Article 2. https://doi.org/10.3934/ipi.2015.9.395
    30. Hintermüller, M., & Langer, A. (2015). Non-overlapping domain decomposition methods for dual total variation  based image denoising. Journal of Scientific Computing, 62(2), Article 2. http://link.springer.com/article/10.1007/s10915-014-9863-8
    31. Hänel, A. (2015). Singular problems in quantum and elastic waveguides via Dirichlet-to-Neumann analysis. [Dissertation]. Universität Stuttgart.
    32. Höllig, K., & Hörner, J. (2015). Programming finite element methods with weighted B-splines. Computers & Mathematics with Applications, 70(7), Article 7. https://doi.org/10.1016/j.camwa.2015.02.019
    33. Kaulmann, S., Flemisch, B., Haasdonk, B., Lie, K. A., & Ohlberger, M. (2015). The localized reduced basis multiscale method for two-phase flows in    porous media. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 102(5, SI), Article 5, SI. https://doi.org/10.1002/nme.4773
    34. Kissling, F., & Rohde, C. (2015). The Computation of Nonclassical Shock Waves in Porous Media with  a Heterogeneous Multiscale Method: The Multidimensional Case. Multiscale Model. Simul., 13 Nr. 4, 1507–1541. https://doi.org/10.1137/120899236
    35. Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2015). Poisson problems for semilinear Brinkman systems on Lipschitz domains  in R^3. ZAMP, 66, 833–846.
    36. Kohr, M., de Cristoforis, M. L., & Wendland, W. L. (2015). Poisson problems for semilinear Brinkman systems on Lipschitz domains in    R-n. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 66(3), Article 3. https://doi.org/10.1007/s00033-014-0439-0
    37. Kohr, M., Pintea, C., & Wendland, W. L. (2015). Poisson-Transmission Problems for -Perturbations of the Stokes System on    Lipschitz Domains in Compact Riemannian Manifolds. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 27(3–4), Article 3–4. https://doi.org/10.1007/s10884-014-9359-0
    38. Kovar\’ık, H., & Weidl, T. (2015). Improved Berezin-Li-Yau inequalities with magnetic field. Proc. Roy. Soc. Edinburgh Sect. A, 145(1), Article 1. https://doi.org/10.1017/S0308210513001595
    39. Kovarik, H., & Weidl, T. (2015). Improved Berezin-Li-Yau inequalities with magnetic field. In Proceedings of the Royal Society Of Edinburgh. Section A, Mathematics (No. 1; Bd. 145, Nummer 1, S. 145–160). Cambridge Univ. Press. https://doi.org/10.1017/S0308210513001595
    40. Kroeker, I., Nowak, W., & Rohde, C. (2015). A stochastically and spatially adaptive parallel scheme for uncertain    and nonlinear two-phase flow problems. COMPUTATIONAL GEOSCIENCES, 19(2), Article 2. https://doi.org/10.1007/s10596-014-9464-5
    41. Kröker, I., Nowak, W., & Rohde, C. (2015). A stochastically and spatially adaptive parallel scheme for uncertain  and nonlinear two-phase flow problems. Comput. Geosci., 19(2), Article 2. https://doi.org/10.1007/s10596-014-9464-5
    42. Kutter, M. (2015). A two scale model for liquid phase epitaxy with elasticity [University of Stuttgart]. http://elib.uni-stuttgart.de/opus/volltexte/2015/9833/
    43. Köroglu, H., Scherer, C. W., & Falcone, P. (2015). Robust Static Output Feedback Synthesis under an Integral Quadratic Constraint on the States. Eur. Control Conf., 3203–3208. https://doi.org/10.1109/ECC.2015.7331027
    44. Lienstromberg, C. (2015). A free boundary value problem modelling microelectromechanical              systems with general permittivity. Nonlinear Anal. Real World Appl., 25, 190--218. https://doi.org/10.1016/j.nonrwa.2015.03.008
    45. List, F., & Radu, F. A. (2015). A study on iterative methods for solving Richards’ equation. http://www.nupus.uni-stuttgart.de/07_Preprints_Publications/Preprints/Preprints-PDFs/Preprint_201506.pdf
    46. Martini, I., & Haasdonk, B. (2015). Output Error Bounds for the Dirichlet-Neumann Reduced Basis Method. Numerical Mathematics and Advanced Applications - ENUMATH 2013, 103, 437--445. https://doi.org/10.1007/978-3-319-10705-9_43
    47. Martini, I., Rozza, G., & Haasdonk, B. (2015). Reduced basis approximation and a-posteriori error estimation for  the coupled Stokes-Darcy system. Advances in Computational Mathematics, 41(5), Article 5. https://doi.org/10.1007/s10444-014-9396-6
    48. Micula, S., & Wendland, W. L. (2015). Trigonometric collocation for nonlinear Riemann-Hilbert problems  in doubly connected domains. IMA J. Num. Analysis, 35, 834–858.
    49. Micula, S., & Wendland, W. L. (2015). Trigonometric collocation for nonlinear Riemann-Hilbert problems on    doubly connected domains. IMA JOURNAL OF NUMERICAL ANALYSIS, 35(2), Article 2. https://doi.org/10.1093/imanum/dru009
    50. Missler, J., Schwarzmann, D., & Allerhand, L. I. (2015). On the Influence of Filter Choice in Output-Feedback MRAC during Adaptation Transients. IFAC-PapersOnLine, 48(11), Article 11. https://doi.org/10.1016/j.ifacol.2015.09.236
    51. Müthing, S., Ribbrock, D., & Göddeke, D. (2015). Integrating multi-threading and accelerators into DUNE-ISTL. In A. Abdulle, S. Deparis, D. Kressner, F. Nobile, & M. Picasso (Hrsg.), Numerical Mathematics and Advanced Applications -- ENUMATH 2013 (Bd. 103, S. 601--609). Springer. https://doi.org/10.1007/978-3-319-10705-9_59
    52. Neusser, J., Rohde, C., & Schleper, V. (2015). Relaxation of the Navier-Stokes-Korteweg Equations for Compressible  Two-Phase Flow with Phase Transition. J. Numer. Methods Fluids, 79, 615–639. https://doi.org/10.1002/fld.4065
    53. Neusser, J., Rohde, C., & Schleper, V. (2015). Relaxed Navier-Stokes-Korteweg Equations for compressible two-phase  flow with phase transition. J. Numer. Meth. Fluids, 79(12), Article 12. https://doi.org/10.1002/fld.4065
    54. Neusser, J., & Schleper, V. (2015). Numerical schemes for the coupling of compressible and incompressible  fluids in several space dimensions.
    55. Oztepe, G. S., Choudhury, S. R., & Bhatt, A. (2015). Multiple Scales and Energy Analysis of Coupled Rayleigh-Van der Pol  Oscillators with Time-Delayed Displacement and Velocity Feedback:  Hopf Bifurcations and Amplitude Death. Far East Journal of Dynamical Systems. https://doi.org/10.17654/FJDSMar2015_031_059
    56. Redeker, M., & Haasdonk, B. (2015). A POD-EIM reduced two-scale model for crystal growth. Advances in Computational Mathematics, 41(5), Article 5. https://doi.org/10.1007/s10444-014-9367-y
    57. Redeker, M., & Haasdonk, B. (2015). A POD-EIM reduced two-scale model for precipitation in porous media [SimTech Preprint]. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=964
    58. Rohde, C., & Zeiler, C. (2015). A relaxation Riemann solver for compressible two-phase flow with  phase transition and surface tension. Appl. Numer. Math., 95, 267--279. https://doi.org/10.1016/j.apnum.2014.05.001
    59. Ruzhansky, M., & Wirth, J. (2015). L-p Fourier multipliers on compact Lie groups. Math. Z., 280(3–4), Article 3–4. https://doi.org/10.1007/s00209-015-1440-9
    60. Rybak, I. V., Gray, W. G., & Miller, C. T. (2015). Modeling two-fluid-phase flow and species transport in porous media. J. Hydrology, 521, 565--581. https://doi.org/10.1016/j.jhydrol.2014.11.051
    61. Rybak, I., Magiera, J., Helmig, R., & Rohde, C. (2015). Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems. Comput. Geosci., 19, 299–309. https://doi.org/10.1007/s10596-015-9469-8
    62. Scherer, C. W. (2015). Gain-scheduling control with dynamic multipliers by convex optimization. SIAM J. Contr. Optim., 53(3), Article 3. https://doi.org/10.1137/140985871
    63. Schleper, V. (2015). A hybrid model for traffic flow and crowd dynamics with random individual  properties. Math. Biosci. Eng., 12(2), Article 2. https://doi.org/10.3934/mbe.2015.12.393
    64. Schleper, V. (2015). Nonlinear Transport and Coupling of Conservation Laws.
    65. Schmidt, A., Dihlmann, M., & Haasdonk, B. (2015). Basis generation approaches for a reduced basis linear quadratic  regulator. Proc. MATHMOD 2015 - 8th Vienna International Conference on Mathematical  Modelling, 713--718. https://doi.org/10.1016/j.ifacol.2015.05.016
    66. Schmidt, A., & Haasdonk, B. (2015). Reduced basis method for $H_2$ optimal feedback control problems. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1442
    67. Schmidt, A., & Haasdonk, B. (2015). Reduced Basis Approximation of Large Scale Algebraic Riccati Equations. University of Stuttgart.
    68. Steinwart, I. (2015). Measuring the capacity of sets of functions in the analysis of ERM. In A. Gammerman & V. Vovk (Hrsg.), Festschrift in Honor of Alexey Chervonenkis (S. 223--239). Springer. https://doi.org/10.1007/978-3-642-41136-6
    69. Steinwart, I. (2015). Supplement B to ``Fully Adaptive Density-Based Clustering’’. Fakultät für Mathematik und Physik, Universität Stuttgart. https://doi.org/10.1214/15-AOS1331SUPP
    70. Steinwart, I. (2015). Fully Adaptive Density-Based Clustering. Ann. Statist., 43, 2132--2167. https://doi.org/10.1214/15-AOS1331
    71. Steinwart, I. (2015). Supplement A to ``Fully Adaptive Density-Based Clustering’’ (Nos. 2013–016; Nummern 2013–016). Fakultät für Mathematik und Physik, Universität Stuttgart. https://doi.org/10.1214/15-AOS1331SUPP
    72. Thomann, P., Steinwart, I., & Schmid, N. (2015). Towards an Axiomatic Approach to Hierarchical Clustering of Measures. J. Mach. Learn. Res., 16, 1949--2002.
    73. Veenman, J. (2015). A general framework for robust analysis and control: an integral quadratic constraint based approach [Dissertation, Logos Verlag, Berlin]. http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3963&lng=eng&id=
    74. Wirth, J. (2015). Diffusion phenomena for partially dissipative hyperbolic              systems. In Nonlinear dynamics in partial differential equations (Bd. 64, S. 303--310). Math. Soc. Japan, Tokyo.
    75. Wirtz, D., Karajan, N., & Haasdonk, B. (2015). Surrogate Modelling of multiscale models using kernel methods. International Journal of Numerical Methods in Engineering, 101(1), Article 1. https://doi.org/10.1002/nme.4767
    76. Wirtz, D., Karajan, N., & Haasdonk, B. (2015). Surrogate modeling of multiscale models using kernel methods. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 101(1), Article 1. https://doi.org/10.1002/nme.4767
    77. Zeiler, C. (2015). Liquid Vapor Phase Transitions: Modeling, Riemann Solvers and Computation [Verlag Dr. Hut]. http://elib.uni-stuttgart.de/handle/11682/8919%7D
  12. 2014

    1. Adibi, H., & Minbashian, H. (2014). Integral Equations (in Persian). Amirkabir University of Technology Press.
    2. Aki, G. L., Dreyer, W., Giesselmann, J., & Kraus, C. (2014). A quasi-incompressible diffuse interface model with phase transition. Math. Models Methods Appl. Sci., 24(5), Article 5. https://doi.org/10.1142/S0218202513500693
    3. Apprich, C., Höllig, K., Hörner, J., Keller, A., & Yazdani, E. N. (2014). Finite Element Approximation with Hierarchical B-Splines. In J.-D. Boissonnat, A. Cohen, O. Gibaru, C. Gout, T. Lyche, M.-L. Mazure, & L. L. Schumaker (Hrsg.), Curves and Surfaces (Bd. 9213, S. 1–15). Springer. http://dblp.uni-trier.de/db/conf/cas/cas2014.html#ApprichHHKY14
    4. Armiti-Juber, A., & Rohde, C. (2014). Almost Parallel Flows in Porous Media. In J. Fuhrmann, M. Ohlberger, & C. Rohde (Hrsg.), Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems (Bd. 78, S. 873–881). Springer International Publishing. https://doi.org/10.1007/978-3-319-05591-6_88
    5. Barth, A., & Benth, F. E. (2014). The forward dynamics in energy markets -- infinite-dimensional modelling  and simulation. Stochastics, 86(6), Article 6. https://doi.org/10.1080/17442508.2014.895359
    6. Barth, A., & Moreno-Bromberg, S. (2014). Optimal risk and liquidity management with costly refinancing opportunities. Insurance Math. Econom., 57, 31--45. https://doi.org/10.1016/j.insmatheco.2014.05.001
    7. Bastian, P., Engwer, C., Göddeke, D., Iliev, O., Ippisch, O., Ohlberger, M., Turek, S., Fahlke, J., Kaulmann, S., Müthing, S., & Ribbrock, D. (2014). EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications. In L. Lopes, J. Zilinskas, A. Costan, RobertoG. Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro, L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia, S. Hunold, StephenL. Scott, S. Lankes, C. Lengauer, J. Carretero, J. Breitbart, & M. Alexander (Hrsg.), Euro-Par 2014: Parallel Processing Workshops (Bd. 8806, S. 530--541). Springer. https://doi.org/10.1007/978-3-319-14313-2_45
    8. Bonnafé, C., & Geck, M. (2014). Conjugacy classes of involutions and Kazhdan–Lusztig cells. Representation Theory of the American Mathematical Society, 18(6), Article 6. https://doi.org/10.1090/s1088-4165-2014-00456-4
    9. Burkovska, O., Haasdonk, B., Salomon, J., & Wohlmuth, B. (2014). Reduced basis methods for pricing options with the Black-Scholes and Heston model. SIAM Journal on Financial Mathematics, 6, 685--712. https://doi.org/10.1137/140981216
    10. Bürger, R., Kröker, I., & Rohde, C. (2014). A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier-thickener unit. ZAMM Z. Angew. Math. Mech., 94(10), Article 10. https://doi.org/10.1002/zamm.201200174
    11. Chalons, C., Engel, P., & Rohde, C. (2014). A Conservative and Convergent Scheme for Undercompressive Shock Waves. SIAM J. Numer. Anal., 52(1), Article 1. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=732
    12. Corli, A., Rohde, C., & Schleper, V. (2014). Parabolic approximations of diffusive-dispersive equations. J. Math. Anal. Appl., 414, 773–798. http://dx.doi.org/10.1016/j.jmaa.2014.01.049
    13. Cruz-Uribe, D., Fiorenza, A., Ruzhansky, M., & Wirth, J. (2014). Variable Lebesgue spaces and hyperbolic systems. In Advanced Courses in Mathematics. CRM Barcelona (S. x+169). Birkhäuser/Springer, Basel.
    14. Dihlmann, M., & Haasdonk, B. (2014). A reduced basis Kalman filter for parametrized partial differential equations. University of Stuttgart.
    15. Dreyer, W., Giesselmann, J., & Kraus, C. (2014). A compressible mixture model with phase transition. Physica D, 273–274, 1–13. http://dx.doi.org/10.1016/j.physd.2014.01.006
    16. Dreyer, W., Giesselmann, J., & Kraus, C. (2014). Modeling of compressible electrolytes with phase transition. http://arxiv.org/abs/1405.6625
    17. Ehlers, W., Helmig, R., & Rohde, C. (2014). Editorial: Deformation and transport phenomena in porous media. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 94(7–8), Article 7–8. https://doi.org/10.1002/zamm.201400559
    18. Engel, P., Viorel, A., & Rohde, C. (2014). A Low-Order Approximation for Viscous-Capillary Phase Transition  Dynamics. Port. Math., 70(4), Article 4. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=723
    19. Eymard, R., & Schleper, V. (2014). Study of a numerical scheme for miscible two-phase flow in porous  media. Numer. Meth. Part. D. E., 30, 723–748. https://doi.org/10.1002/num.21823
    20. Fechter, S., Zeiler, C., Munz, C.-D., & Rohde, C. (2014). Simulation of compressible multi-phase flows at extreme ambient conditions using a Discontinuous-Galerkin method. ILASS Europe, 26th European Conference on Liquid Atomization and Spray Systems.
    21. Finite Volumes for Complex Applications VII Elliptic, Parabolic and  Hyperbolic Problems, FVCA 7, Berlin, June 2014. (2014). In J. Fuhrmann, M. Ohlberger, & C. Rohde (Hrsg.), Springer Proceedings in Mathematics & Statistics: Bd. Vol. 77/78.
    22. Garikapati, H. (2014). A PGD Based Preconditioner for Scalar Elliptic Problems.
    23. Gaspoz, F. D., & Morin, P. (2014). Approximation classes for adaptive higher order finite element approximation. Math. Comp., 83(289), Article 289. https://doi.org/10.1090/S0025-5718-2013-02777-9
    24. Geck, M. (2014). On the Characterization of Galois Extensions. The American Mathematical Monthly, 121(7), Article 7. https://doi.org/10.4169/amer.math.monthly.121.07.637
    25. Geck, M. (2014). Algebra: Gruppen, Ringe, Körper. Mit einer Einführung in die Darstellungstheorie endlicher Gruppen. edition delkhofen.
    26. Geck, M. (2014). Kazhdan-Lusztig cells and the Frobenius-Schur indicator. Journal of Algebra, 398, 329--342. https://doi.org/10.1016/j.jalgebra.2013.01.019
    27. Giesselmann, J. (2014). A Relative Entropy Approach to Convergence of a Low Order Approximation  to a Nonlinear Elasticity Model with Viscosity and Capillarity. SIAM J. Math. Anal., 46(5), Article 5. https://doi.org/10.1137/140951710
    28. Giesselmann, J., Makridakis, C., & Pryer, T. (2014). Energy consistent DG methods for the Navier-Stokes-Korteweg system. Math. Comp., 83, 2071-- 2099. http://dx.doi.org/10.1090/S0025-5718-2014-02792-0
    29. Giesselmann, J., & M�ller, T. (2014). Geometric error of finite volume schemes for conservation laws on  evolving surfaces. Numer. Math., 128(3), Article 3. https://doi.org/10.1007/s00211-014-0621-5
    30. Giesselmann, J., & M�ller, T. (2014). Estimating the Geometric Error of Finite Volume Schemes for Conservation  Laws on Surfaces for generic numerical flux functions. In M. O. J. Fuhrmann & C. Rohde (Hrsg.), Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects (Bd. 77).
    31. Giesselmann, J., & Pryer, T. (2014). On aposteriori error analysis of DG schemes approximating hyperbolic  conservation laws. In M. O. J. Fuhrmann & C. Rohde (Hrsg.), Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects (Bd. 77).
    32. Giesselmann, J., & Tzavaras, A. E. (2014). Singular Limiting Induced from Continuum Solutions and the Problem  of Dynamic Cavitation. Arch. Ration. Mech. Anal., 212(1), Article 1. https://doi.org/10.1007/s00205-013-0677-x
    33. Giesselmann, J., & Tzavaras, A. E. (2014). On cavitation in elastodynamics. In F. Ancona, A. Bressan, P. Marcati, & A. Marson (Hrsg.), Hyperbolic Problems: Theory, Numerics, Applications (S. 599–606). AIMS. https://aimsciences.org/books/am/AMVol8.html
    34. Göddeke, D., Komatitsch, D., & Möller, M. (2014). Finite and Spectral Element Methods on Unstructured Grids for Flow  and Wave Propagation Methods. In V. Kindratenko (Hrsg.), Numerical Computations with GPUs (S. 183--206). Springer. https://doi.org/10.1007/978-3-319-06548-9_9
    35. Haasdonk, B. (2014). Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction  for Stationary and Instationary Problems [SimTech Preprint]. IANS, University of Stuttgart, Germany. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938
    36. Haasdonk, B., & Ohlberger, M. (2014). Wenn die Probleme zahlreicher werden: Reduzierte Basis Methoden  f�r effiziente und gesicherte numerische Simulation. GAMM Rundbrief, 2014(1), Article 1.
    37. Haasdonk, B., & Ohlberger, M. (2014). Wenn die Probleme zahlreicher werden: Reduzierte Basis Methoden für effiziente und gesicherte numerische Simulation. GAMM Rundbrief, 2014(1), Article 1.
    38. Hahn, B. N. (2014). Reconstruction of dynamic objects with affine deformations in computerized tomography. Journal of Inverse and Ill-posed Problems, 22(3), Article 3. https://doi.org/10.1515/jip-2012-0094
    39. Hahn, B. N. (2014). Efficient algorithms for linear dynamic inverse problems with known motion. Inverse Problems, 30(3), Article 3. https://doi.org/10.1088/0266-5611/30/3/035008
    40. Hang, H., & Steinwart, I. (2014). Fast Learning from $\alpha$-mixing Observations. J. Multivariate Anal., 127, 184--199. https://doi.org/10.1016/j.jmva.2014.02.012
    41. Harbrecht, H., Wendland, W. L., & Zorii, N. (2014). Riesz minimal energy problems on C^k-1,1 manifolds. Math. Nachr., 287, 48–69.
    42. Hintermüller, M., & Langer, A. (2014). Adaptive Regularization for Parseval Frames in Image Processing. SFB-Report No. 2014-014. http://people.ricam.oeaw.ac.at/a.langer/publications/SFB-Report-2014-014.pdf
    43. Hintermüller, M., & Langer, A. (2014). Surrogate Functional Based Subspace Correction Methods for Image  Processing. In Domain Decomposition Methods in Science and Engineering XXI (S. 829--837). Springer. http://link.springer.com/chapter/10.1007/978-3-319-05789-7_80
    44. Kabil, B., & Rohde, C. (2014). The influence of surface tension and configurational forces on the  stability of liquid-vapor interfaces. Nonlinear Analysis: Theory, Methods & Applications, 107(0), Article 0. http://dx.doi.org/10.1016/j.na.2014.04.003
    45. Kaulmann, S., Flemisch, B., Haasdonk, B., Lie, K.-A., & Ohlberger, M. (2014). The localized reduced basis multiscale method for two-phase flows in porous media. International Journal for Numerical Methods in Engineering. https://doi.org/10.1002/nme.4773
    46. Kaulmann, S., Flemisch, B., Haasdonk, B., Lie, K. A., & Ohlberger, M. (2014). The Localized Reduced Basis Multiscale method for two-phase flow in porous media. arXiv preprint arXiv:1405.2810.
    47. Kazaz, L. (2014). Black Box Model Order Reduction of Nonlinear Systems with Kernel  and Discrete Empirical Interpolation.
    48. Kohls, K., Rösch, A., & Siebert, K. G. (2014). A Posteriori Error Analysis of Optimal Control Problems with Control  Constraints. SIAM J. Control Optim., 52(3), 1832�1861. (30 pages). http://dx.doi.org/10.1137/130909251
    49. Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2014). Nonlinear Darcy-Forchheimer-Brinkman system with linear boundary  conditions in Lipschitz domains. In A. G. T. Aliev Azerogly & S. V. Rogosin (Hrsg.), Complex Analysis and Potential Theory with Applications (S. 111–124). Cambridge Sci. Publ.
    50. Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2014). Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains. J. Math. Fluid Mechanics, 16, 595–830.
    51. Kohr, M., Pintea, C., & Wendland, W. L. (2014). Neumann-transmission problems for pseudodifferential Brinkman operators  on Lipschitz domains in compact Riemannian manifolds. Communications in Pure and Applied Analysis, 13, 1–28. https://doi.org/03934/cpaa.2013.13.
    52. Köppel, M., Kröker, I., & Rohde, C. (2014). Stochastic Modeling for Heterogeneous Two-Phase Flow. In J. Fuhrmann, M. Ohlberger, & C. Rohde (Hrsg.), Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects (Bd. 77, S. 353–361). Springer International Publishing. https://doi.org/10.1007/978-3-319-05684-5_34
    53. Maier, I., & Haasdonk, B. (2014). A Dirichlet-Neumann reduced basis method for homogeneous domain  decomposition problems. Applied Numerical Mathematics, 78, 31--48. https://doi.org/10.1016/j.apnum.2013.12.001
    54. Müthing, S., Bastian, P., Göddeke, D., & Ribbrock, D. (2014). Node-level performance engineering for an advanced density driven  porous media flow solver. 3rd Workshop on Computational Engineering 2014, Stuttgart, Germany, 109--113.
    55. Redeker, M. (2014). Adaptive two-scale models for processes with evolution of microstructures [University of Stuttgart]. http://elib.uni-stuttgart.de/opus/volltexte/2014/9443
    56. Rossi, E., & Schleper, V. (2014). Convergence of a numerical scheme for a mixed hyperbolic-parabolic  system in two space dimensions. http://www.mathematik.uni-stuttgart.de/preprints/downloads/2015/2015-003.pdf
    57. Ruzhansky, M., Turunen, V., & Wirth, J. (2014). Hörmander class of pseudo-differential operators on compact Lie groups and global hypoellipticity. J. Fourier Anal. Appl., 20(3), Article 3. https://doi.org/10.1007/s00041-014-9322-9
    58. Ruzhansky, M., & Wirth, J. (2014). Global functional calculus for operators on compact Lie groups. J. Funct. Anal., 267(1), Article 1. https://doi.org/10.1016/j.jfa.2014.04.009
    59. Ruzhansky, M., & Wirth, J. (2014). Asymptotic behaviour of solutions to hyperbolic equations and systems. In Variable Lebesgue spaces and hyperbolic systems (S. 91--169). Birkhäuser/Springer, Basel.
    60. Rybak, I. (2014). Coupling free flow and porous medium flow systems using sharp interface  and transition region concepts. In J. Fuhrmann, M. Ohlberger, & C. Rohde (Hrsg.), Finite Volumes for Complex Applications VII - Elliptic, Parabolic and Hyperbolic Problems, FVCA 7 (Bd. 78, S. 703--711). Springer. https://doi.org/10.1007/978-3-319-05591-6_70
    61. Rybak, I., & Magiera, J. (2014). A multiple-time-step technique for coupled free flow and porous medium  systems. J. Comput. Phys., 272, 327--342. https://doi.org/10.1016/j.jcp.2014.04.036
    62. Scherer, C. W. (2014). $H_ınfty$- and $H_2$-synthesis for nested interconnections: A direct state-space approach by linear matrix inequalities. 21st Int. Symp. Math. Theory Netw. and Systems. http://fwn06.housing.rug.nl/mtns2014-papers/fullPapers/0141.pdf
    63. Staehle, M. (2014). Anisotrope Diffusion zur Bildfilterung.
    64. Steinwart, I., Pasin, C., Williamson, R., & Zhang, S. (2014). Elicitation and Identification of Properties. In M. F. Balcan & C. Szepesvari (Hrsg.), JMLR Workshop and Conference Proceedings Volume 35: Proceedings of the 27th Conference on Learning Theory 2014 (S. 482--526).
    65. Veenman, J., & Scherer, C. W. (2014). IQC-synthesis with general dynamic multipliers. Int. J. Robust Nonlin., 24(17), Article 17. https://doi.org/10.1002/rnc.3042
    66. Veenman, J., & Scherer, C. W. (2014). A synthesis framework for robust gain-scheduling controllers. Automatica, 50(11), Article 11. https://doi.org/10.1016/j.automatica.2014.10.002
    67. Wendland, W. L. (2014). Martin Costabel’s version of the trace theorem revisited. Math. Methods Appl. Sci., 37 (13), 1924–1955.
    68. Wirth, J. (2014). Diffusion phenomena for partially dissipative hyperbolic              systems. J. Math. Anal. Appl., 414(2), Article 2. https://doi.org/10.1016/j.jmaa.2014.01.034
    69. Wirtz, D., Sorensen, D. C., & Haasdonk, B. (2014). A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical  Systems. SIAM Journal on Scientific Computing, 36(2), Article 2. https://doi.org/10.1137/120899042
    70. Wittwar, D. (2014). Empirische Interpolation and Anwendung zur Numerischen Integration.
  13. 2013

    1. Abdulle, A., Barth, A., & Schwab, C. (2013). Multilevel Monte Carlo methods for stochastic elliptic multiscale  PDEs. Multiscale Model. Simul., 11(4), Article 4. https://doi.org/10.1137/120894725
    2. Amsallem, D., Haasdonk, B., & Rozza, G. (2013). A Conference within a Conference for MOR Researchers. SIAM News, 46(6), Article 6. http://www.siam.org/news/news.php?id=2089
    3. Barth, A., & Lang, A. (2013). L^p and almost sure convergence of a Milstein scheme for stochastic  partial differential equations. Stochastic Process. Appl., 123(5), Article 5. https://doi.org/10.1016/j.spa.2013.01.003
    4. Barth, A., Lang, A., & Schwab, C. (2013). Multilevel Monte Carlo method for parabolic stochastic partial  differential equations. BIT, 53(1), Article 1. https://doi.org/10.1007/s10543-012-0401-5
    5. Bissinger, T. (2013). Verfahren zur Stabilen Kerninterpolation.
    6. Chaudenson, J., Fetzer, M., Scherer, C. W., Beauvois, D., Sandou, G., Bennani, S., & Ganet-Shoeller, M. (2013). Stability analysis of pulse-modulated systems with an application to space launchers. IFAC Proc. Vol., 46(19), Article 19. https://doi.org/10.3182/20130902-5-DE-2040.00082
    7. De Marchi, S., & Santin, G. (2013). A new stable basis for radial basis function interpolation. J. Comput. Appl. Math., 253, 1--13. https://doi.org/10.1016/j.cam.2013.03.048
    8. Degeratu, A., & Stern, M. (2013). Witten spinors on nonspin manifolds. Comm. Math. Phys., 324(2), Article 2. https://doi.org/10.1007/s00220-013-1804-0
    9. Dihlmann, M., & Haasdonk, B. (2013). Certified Nonlinear Parameter Optimization with Reduced Basis Surrogate  Models. PAMM, Proc. Appl. Math. Mech., Special Issue: 84th Annual Meeting  of the International Association of Applied Mathematics and Mechanics  (GAMM), Novi Sad 2013; Editors: L. Cvetkovic, T. Atanackovic and  V. Kostic, 13(1), Article 1. https://doi.org/doi: 10.1002/pamm.201310002
    10. Dihlmann, M. A., & Haasdonk, B. (2013). Certified PDE-constrained parameter optimization using reduced basis  surrogate models for evolution problems [SimTech Preprint]. University of Stuttgart (The final publication is available at Springer  via http://dx.doi.org/10.1007/s10589-014-9697-1).
    11. Eberts, M., & Steinwart, I. (2013). Optimal regression rates for SVMs using Gaussian kernels. Electron. J. Stat., 7, 1--42. https://doi.org/10.1214/12-EJS760
    12. Eck, Ch., Kutter, M., Sändig, A.-M., & Rohde, Ch. (2013). A two scale model for liquid phase epitaxy with elasticity: An iterative  procedure. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, 93(10–11), Article 10–11. https://doi.org/10.1002/zamm.201200238
    13. Eisenschmidt, K., Rauschenberger, P., Rohde, C., & Weigand, B. (2013). Modelling of freezing processes in super-cooled droplets on sub-grid  scale. ILASS�Europe, 25th European Conference on Liquid Atomization and  Spray Systems.
    14. Fechter, S., Jägle, F., & Schleper, V. (2013). Exact and approximate Riemann solvers at phase boundaries. Computers & Fluids, 75, 112--126. https://doi.org/10.1016/j.compfluid.2013.01.024
    15. Fehr, J., Fischer, M., Haasdonk, B., & Eberhard, P. (2013). Greedy-based Approximation of Frequency-weighted Gramian Matrices  for Model Reduction in Multibody Dynamics. ZAMM, 93(8), Article 8. https://doi.org/10.1002/zamm.201200014
    16. Fericean, D., Grosan, T., Kohr, M., & Wendland, W. L. (2013). Interface boundary value problems of Robin-transmission type for  the Stokes and Brinkman systems on n-dimensional Lipschitz domains:  Applications. Math. Methods Appl. Sci., 36, 1631–1648. https://doi.org/10.1002/mma.2716
    17. Fericean, D., & Wendland, W. L. (2013). Layer potential analysis for a Dirichlet-transmission problem in  Lipschitz domains in R^n. ZAMM, 93, 762–776. https://doi.org/10.1002/zamm.20100185
    18. Geck, M. (2013). An Introduction to Algebraic Geometry and Algebraic Groups. In Oxford Graduate Texts in Mathematics (Bd. 10, S. ix+307). Oxford University Press.
    19. Geck, M., & Iancu, L. (2013). Ordering Lusztig’s families in type Bn. J. Algebr. Comb., 38, 457–489. https://doi.org/DOI 10.1007/s10801-012-0411-z
    20. Geck, M., & Malle, G. (2013). Frobenius-Schur indicators of unipotent characters and the twisted involution module. Representation Theory of the American Mathematical Society, 17(5), Article 5. https://doi.org/10.1090/s1088-4165-2013-00430-2
    21. Geveler, M., Ribbrock, D., Göddeke, D., Zajac, P., & Turek, S. (2013). Towards a complete FEM-based simulation toolkit on GPUs: Unstructured  Grid Finite Element Geometric Multigrid solvers with strong smoothers  based on Sparse Approximate Inverses. Computers & Fluids, 80, 327--332. https://doi.org/10.1016/j.compfluid.2012.01.025
    22. Giesselmann, J. (2013). Cavitation and Singular Solutions in Nonlinear Elastodynamics. PAMM 13, 363–364. https://doi.org/10.1002/pamm.201310177
    23. Giesselmann, J., Miroshnikov, A., & Tzavaras, A. E. (2013). The problem of dynamic cavitation in nonlinear elasticity. S�minaire Laurent Schwartz � EDP et applications. http://slsedp.cedram.org/cedram-bin/article/SLSEDP_2012-2013____A14_0.pdf
    24. Göddeke, D., Komatitsch, D., Geveler, M., Ribbrock, D., Rajovic, N., Puzovic, N., & Ramirez, A. (2013). Energy efficiency vs. performance of the numerical solution of PDEs:  an application study on a low-power ARM-based cluster. Journal of Computational Physics, 237, 132--150. https://doi.org/10.1016/j.jcp.2012.11.031
    25. Göttlich, S., Hoher, S., Schindler, P., Schleper, V., & Verl, A. (2013). Modeling, simulation and validation of material flow on conveyor  belts. Appl. Math. Modell., 38(13), Article 13. http://dx.doi.org/10.1016/j.apm.2013.11.039
    26. Haasdonk, B. (2013). Convergence Rates of the POD--Greedy Method. ESAIM: Mathematical Modelling and Numerical Analysis, 47(3), Article 3. https://doi.org/10.1051/m2an/2012045
    27. Haasdonk, B., Urban, K., & Wieland, B. (2013). Reduced basis methods for parametrized partial differential equations  with stochastic influences using the Karhunen Loeve expansion. SIAM/ASA J. Unc. Quant., 1, 79–105.
    28. Hahn, B. N., Louis, A. K., Maisl, M., & Schorr, C. (2013). Combined reconstruction and edge detection in dimensioning. Meas. Sci. Technol, 24(12), Article 12. https://doi.org/10.1088/0957-0233/24/12/125601
    29. Heine, C.-J., M�ller, C. A., Peter, M. A., & Siebert, K. G. (2013). Multiscale adaptive simulations of concrete carbonation taking into  account the evolution of the microstructure. In C. Hellmich, B. Pichler, & D. Adam (Hrsg.), Poromechanics: Bd. V (S. 1964�1972). ASCE. http://dx.doi.org/10.1061/9780784412992.232
    30. Hintermüller, M., & Langer, A. (2013). Subspace Correction Methods for a Class of Nonsmooth and Nonadditive  Convex Variational Problems with Mixed L\^1/L\^2 Data-Fidelity  in Image Processing. SIAM Journal on Imaging Sciences, 6(4), Article 4. http://epubs.siam.org/doi/abs/10.1137/120894130
    31. Höllig, K., & Hörner, J. (2013). Approximation and Modeling with B-Splines. (S. I–XIII, 1–211). SIAM.
    32. Kaulmann, S., & Haasdonk, B. (2013). Online Greedy Reduced Basis Construction using Dictionaries [SimTech Preprint]. University of Stuttgart.
    33. Kerr, M. M., & Kollross, A. (2013). Nonnegatively curved homogeneous metrics obtained by scaling fibers of submersions. Geometriae Dedicata, 166(1), Article 1. https://doi.org/10.1007/s10711-012-9795-0
    34. Kerr, M. M., & Kollross, A. (2013). Nonnegatively curved homogeneous metrics in low dimensions. Annals of Global Analysis and Geometry, 43(3), Article 3. https://doi.org/10.1007/s10455-012-9345-x
    35. Kissling, F., & Karlsen, K. H. (2013). On the singular limit of a two-phase flow equation with heterogeneities  and dynamic capillary pressure. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, n/a--n/a. https://doi.org/10.1002/zamm.201200141
    36. Kissling, F. (2013). Analysis and Numerics for Nonclassical Wave Fronts in Porous Media [Universität Stuttgart]. http://www.dr.hut-verlag.de/978-3-8439-0996-9.html
    37. Kohr, M., Pintea, C., & Wendland, W. L. (2013). Dirichlet-transmission problems for pseudodifferential Brinkman operators  on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian  manifolds. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, 93, 446–458. https://doi.org/10.1002/zamm.201100194
    38. Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2013). Nonlinear Neumann-Transmission Problems for Stokes and Brinkman Equations  on Euclidean Lipschitz Domains. Potential Analysis, 38, 1123–1171. https://doi.org/10.1007/s.11118-012-9310-0
    39. Kohr, M., Pintea, C., & Wendland, W. L. (2013). Layer Potential Analysis for Pseudodifferential Matrix Operators  in Lipschitz Domains on Compact Riemannian Manifolds: Applications  to Pseudodifferential Brinkman Operators. International Mathematics Research Notices, 2013 (19), 4499–4588. https://doi.org/10.1093/imnr/run999
    40. Kollross, A., & Lytchak, A. (2013). Polar actions on symmetric spaces of higher rank. Bulletin of the London Mathematical Society, 45(2), Article 2. https://doi.org/10.1112/blms/bds091
    41. Kreplin, D. (2013). Adaptive Reduzierte Basis Methoden für Evolutionsprobleme.
    42. Kröker, I. (2013). Stochastic models for nonlinear convection-dominated flows. Universität Stuttgart.
    43. Köppel, M. (2013). Flow Modelling of Coupled Fracture-Matrix Porous Media Systems with  a Two Mesh Concept [Diplomarbeit]. Institut f�r Wasserbau, Universit�t Stuttgart, Zusammenarbeit mit Pomdapi INRIA Rocquencourt . Paris, France.
    44. Langer, A., Osher, S., & Schönlieb, C.-B. (2013). Bregmanized domain decomposition for image restoration. Journal of Scientific Computing, 54(2–3), Article 2–3. http://link.springer.com/article/10.1007/s10915-012-9603-x
    45. Moutari, S., Herty, M., Klein, A., Oeser, M., Schleper, V., & Steinaur, G. (2013). Modeling road traffic accidents using macroscopic second-order models  of traffic flow. IMA Journal of Applied Mathematics, 78(5), Article 5. https://doi.org/doi: 10.1093/imamat/hxs012
    46. Nitsch, F. (2013). Stability Analysis of Linear Time-periodic Systems.
    47. Ortmann, V. (2013). Empirische Matrixinterpolation.
    48. Ostrowski, L. (2013). LQR control for Parametric Systems with Reduced Basis Controllers.
    49. Redeker, M., & Eck, C. (2013). A fast and accurate adaptive solution strategy for two-scale models  with continuous inter-scale dependencies. Journal of Computational Physics, 240, 268–283. https://doi.org/10.1016/j.jcp.2012.12.025
    50. Rohde, C., Wang, W., & Xie, F. (2013). Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation  hydrodynamics model: superposition of rarefaction and contact waves. Communications on Pure and Applied Analysis, 12(5), Article 5. https://doi.org/10.3934/cpaa.2013.12.2145
    51. Rohde, C., Wang, W., & Xie, F. (2013). Decay Rates to Viscous Contact Waves for a 1D Compressible Radiation  Hydrodynamics Model. Mathematical Models and Methods in Applied Sciences, 23(03), Article 03. https://doi.org/10.1142/S0218202512500522
    52. Ruzhanski\uı, M. V., & Virt, I. (2013). On multipliers on compact Lie groups. Funktsional. Anal. i Prilozhen., 47(1), Article 1. https://doi.org/10.1007/s10688-013-0010-3
    53. Sachs, A. (2013). Proper-Generalized-Decomposition-Methode für elliptische partielle  Differentialgleichungen.
    54. Scherer, C. W. (2013). Structured $H_ınfty$-Optimal Control for Nested Interconnections: A State-Space Solution. Syst. Control Lett., 62(12), Article 12. https://doi.org/10.1016/j.sysconle.2013.09.001
    55. Scherer, C. W. (2013). Gain-scheduled synthesis with dynamic generalized strictly positive real multipliers: A complete solution. 52nd IEEE Conf. Decision and Control, 4116–4121. https://doi.org/10.1109/CDC.2013.6760520
    56. Scherer, C. W., & Köse, I. E. (2013). From transfer matrices to realizations: Convergence properties and parametrization of robustness analysis conditions. Syst. Control Lett., 62(8), Article 8. https://doi.org/10.1016/j.sysconle.2013.04.001
    57. Scherer, C. W. (2013). Gain-scheduled synthesis with dynamic stable strictly positive real multipliers: A complete solution. Eur. Control Conf., 3901–3906. https://doi.org/10.23919/ECC.2013.6669184
    58. Schmidt, A. (2013). Galerkin-Radiosity.
    59. Seus, D. (2013). Spektralasymptotiken auf dem Loopgraphen.
    60. Simon, A. (2013). Vergleich zwischen dem Galerkinverfahren und dem Verfahren des minimalen  Residuums im Zusammenhang mit der Reduzierte-Basis-Methode.
    61. Simon, D. (2013). Algorithmen der gitterfreien Kollokation durch radiale Basisfunktionen.
    62. Stein, A. (2013). Limit Pricing als extensives Spiel mit sequentiellen Gleichgewichten [Bachelor Thesis].
    63. Steinwart, I. (2013). Some Remarks on the Statistical Analysis of SVMs and Related Methods. In B. Schölkopf, Z. Luo, & V. Vovk (Hrsg.), Empirical Inference -- Festschrift in Honor of Vladimir N. Vapnik (S. 25–36). Springer. https://doi.org/10.1007/978-3-642-41136-6
    64. Steinwart, I. (2013). Supplement B to ``Fully Adaptive Density-Based Clustering’’. Fakultät für Mathematik und Physik, Universität Stuttgart. https://doi.org/10.1214/15-AOS1331SUPP
    65. Steinwart, I. (2013). Supplement A to ``Fully Adaptive Density-Based Clustering’’ (Nos. 2013–016; Nummern 2013–016). Fakultät für Mathematik und Physik, Universität Stuttgart. https://doi.org/10.1214/15-AOS1331SUPP
    66. Strecker, T. (2013). Simulation and Model Reduction of a Skeletal Muscle Fibre System.
    67. Turek, S., & Göddeke, D. (2013). Hardware-oriented Numerics for PDE. In B. Engquist, T. Chan, W. J. Cook, E. Hairer, J. Hastad, A. Iserles, H. P. Langtangen, C. Le Bris, P. L. Lions, C. Lubich, A. J. Majda, J. R. McLaughlin, R. M. Nieminen, J. T. Oden, P. Souganidis, & A. Tveito (Hrsg.), Encyclopedia of Applied and Computational Mathematics. Springer.
    68. Veenman, J., & Scherer, C. W. (2013). Stability analysis with integral Quadratic constraints: A dissipativity based proof. 52nd IEEE Conf. Decision and Control, 3770–3775. https://doi.org/10.1109/CDC.2013.6760464
    69. Wirth, J. (2013). Thermo-elasticity for anisotropic media in higher dimensions. In Progress in partial differential equations (Bd. 44, S. 367--407). Springer, Cham. https://doi.org/10.1007/978-3-319-00125-8_17
    70. Wirtz, D., & Haasdonk, B. (2013). An Improved Vectorial Kernel Orthogonal Greedy Algorithm. Dolomites Research Notes on Approximation, 6, 83–100. http://drna.di.univr.it/papers/2013/WirtzHaasdonk.2013.VKO.pdf
    71. Wirtz, D., & Haasdonk, B. (2013). A Vectorial Kernel Orthogonal Greedy Algorithm. Dolomites Res. Notes Approx., 6, 83–100. http://drna.padovauniversitypress.it/system/files/papers/WirtzHaasdonk-2013-VKO.pdf
    72. Wolf, J.-P., & Ganser, M. (2013). Modelling and Simulation of Lithium-Ion Batteries.
    73. Yannou, B., Cluzel, F., & Dihlmann, M. (2013). Evolutionary and interactive sketching tool for innovative car shape  design. Machanics & Industry, 14, 1–22.
  14. 2012

    1. Feistauer, M., & Sändig, A.-M. (2012). Graded mesh refinement and error estimates of higher order for DGFE solutions of elliptic boundary value problems in polygons. Numerical Methods for Partial Differential Equations, 28(4), Article 4. https://doi.org/10.1002/num.20668
Zum Seitenanfang